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This book is organized into two major sections: Chapters 1 through 5 describe the
characteristics of the R2000 Processor and Chapters 6, 7, and 8 describe the R2010
FPA. The contents of each chapter are summarized in the list that follows:

e Chapter 1, RISC Architecture: An Overview, describes the
general characteristics and concepts of reduced instruction set
computers.

e Chapter 2, R2000 Processor Overview, describes the general
characteristics and capabilities of the processor. It also pro-
vides a programming model which describes how data is repre-
sented in the R2000 registers and in memory and also provides
a summary of the R2000 CPU registers.

e Chapter 3, Instruction Set Summary, provides a summary de-
scription of the R2000 instruction set.

e Chapter 4, Memory Management System, describes the virtual
memory system supported by the R2000’s System Control
Coprocessor.

® Chapter 5, Exception Processing, describes the events that
cause R2000 exceptions and the sequences that occur during
processing of the exceptions.

e Chapter 6, R2010 FPA Overview, describes the general charac-
teristics and capabilities of the FPA. This chapter also provides
a summary of the R2010 FPA registers and describes how data
is represented in the R2010 registers.

o Chapter 7, FPA Instruction Summary & Instruction Pipeline,
provides a summary description of the R2010 instruction set
and a discussion of instruction overlapping.

e Chapter 8, Floating Point Exceptions, describes how the
R2010 FPA supports the IEEE standard floating point excep-
tions.

e Appendix A provides a detailed description of the format and
operation of each R2000 instruction.

® Appendix B provides a detailed description of the format and

operation of each R2010 FPA instruction.

® Appendix C describes machine language programming tips that
can simplify implementation of commonly required tasks.

® Appendix D describes assembly language programming tech-
niques and provides guidelines for writing programs for use
with the MIPS assembler.

e Appendix E describes how the R2010 FPA supports the IEEE
floating point standard and provides programming tips that can
simplify implementation of standard operations not imple-
mented by the FPA.






About This Book

This book is a comprehensive reference manual for the MIPS RISC architecture. It
describes the functional characteristics and capabilities of the R2000/R3000 Proces-
sors and the R2010/R3010 Floating Point Accelerators (FPA). The new, higher—per-
formance R3000/R3010 machines are architecturally identical to the original
R2000/R2010 versions and the descriptions in this book apply to both series of ma-
chines — only the electrical and performance characteristics differ.
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1
RISC Architecture:
An Overview

The MIPS R2000 RISC architecture delivers dramatic cost/performance advantages
over computers based on traditional architectures. This advantage is the result of a
development methodology that demands optimization across many disciplines in-
cluding custom VLSI, CPU organization, system-level architecture, operating system
considerations, and compiler design. The trade-offs involved in this optimization
process typify, and indeed are the essence of, RISC design. Although most of this
book is devoted to describing the R2000 architecture, this chapter provides a context
for that description by examining some of the underlying concepts that characterize
RISC architectures in general.

Scope of this Overview

RISC design is a methodology still in its infancy, enduring the usual growing pains
as it strives for maturity. Because of the complexity of the subject and its dynamic
state, a thorough and comprehensive discussion is beyond the scope of this book. A
concise discussion of RISC is made more difficult by the nature of the design tech-
niques — they involve myriad trade-offs and compromises between software/hard-
ware, silicon area/compiler technology, component process technology/system soft-
ware requirements, and so on. Therefore, this chapter provides only a brief over-
view of RISC concepts and their implementation so that the architecture of the MIPS
R2000 processors can be better understood and appreciated.

The evolution of computer architectures was dominated, until recently, by families
of increasingly complex processors. Under market pressures to preserve existing
software, complex instruction set computer (CISC) architectures evolved by the
gradual addition of microcode and increasingly elaborate operations. The intent was
to supply more support for high-level languages and operating systems, as semicon-
ductor advances made it possible to fabricate more complex integrated circuits. It
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Chapter 1

seemed self-evident that architectures should become more complex as technology
advances made it possible to include more complexity on VLSI devices.

In recent years, however, reduced instruction set computer (RISC) architectures
have implemented a much more sophisticated division of complexity between hard-
ware, firmware, and software. RISC concepts emerged from statistical analysis of
how software actually uses the resources of a processor. Dynamic measurement of
system kernels and object modules generated by optimizing compilers show an over-
whelming predominance, even in the code for CISC machines, of the simplest in-
structions. Complex instructions are seldom used because microcode rarely pro-
vides the precise routines needed to support a variety of high-level-language and
system environments. Therefore, RISC designs eliminate the microcoded routines
and turn the low-level control of the machine over to software.

This approach is not new. But its application is more universal in recent years
thanks to the prevalence of high-level languages, the development of compilers that
can optimize at the “microcode” level, and dramatic advances in semiconductor
memory and packaging. It is now feasible to replace a machine’s microcode ROM
with faster RAM organized as an instruction cache. Machine control then resides in
the instruction cache and is, in effect, customized on the fly. The instruction stream
generated by system and compiler-generated code provides a precise fit between the
requirements of high-level software and the capabilities of the hardware.

Notice that reducing or simplifying the instruction set is not the primary goal of the
architectural concepts described here — it is really just a side effect of the tech-
niques used to obtain the highest performance possible from available technology.
Thus, the term Reduced Instruction Set Computers is a bit misleading: it is the push
for performance that really drives and shapes RISC designs. Therefore, let us begin
by defining performance.

Defining Performance

The performance of a processor can be defined as the time required to accomplish a
specific task (or program, or algorithm, or benchmark) and can be expressed as the
product of three factors:

Time per Task = C * T * I

where: C = Cycles per Instructions
T = Time per Cycle (clock speed)
I = Instructions per Task

Performance can be improved by reducing any of these three factors. RISC-type
designs strive to improve performance by minimizing the first two factors. How-
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ever, changes that reduce the cycles/instruction and time/cycle factors tend to in-
crease the instructions/task factor: this tendency has been the focus of most criti-
cisms leveled at RISC. However, the use of optimizing compilers and other tech-
niques mitigate this tendency. The sections that follow discuss each of the three
performance-related factors and typical techniques used in RISC-type designs to
minimize each factor.

Time per Instruction

The time required to execute an insiruction is the product of the first two factors (C
and T) in the equation developed in the preceding section. These two factors are
complementary: increasing the clock speed (reducing the time per cycle) decreases
the amount of work that can be accomplished within a cycle. Thus, fast clock rates
(short cycle times) tend to increase the number of cycles required to perform an
instruction as illustrated in the following figure:

‘Longer cycle time — fewer cycleslinstruction ==

In most processors, it makes little difference whether cycle time is short and instruc-
tions require many cycles, or cycle time is long with instructions requiring few cy-
cles — it’s the total time/instruction (time/cycle X cycles/instruction) that is signifi-
cant. Typically, the cycle time is chosen to allow execution of the most simple
operations (or sub-operations) in a single cycle, and execution of other, more com-
plex operations in multiple cycles. Thus, the instruction stream in a typical CISC
processor might look like this:

LI
s} more complex  Asimple V. complex
- instruction instruction - instruction

simple

instruction  complex

i instructions
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Executing the most simple instructions in the above example requires four cycles
and executing the more complex instruction requires eight or twelve cycles. This
approach would seem to achieve a rather efficient utilization of time: simple instruc-
tions are executed quickly and more complicated instructions are given additional
time to execute. Each instruction is given just the amount of time it needs — no
more and no less. This technique has one very damaging drawback, however, that
makes it unsuitable in RISC-type designs: it greatly complicates the use of instruc-
tion pipelines. Instruction pipelines are an essential technique used to reduce the
cycles/instruction factor, and the gains that pipelines can provide are negated by
instruction sets where the cycles/instruction factor is variable. The advantages of
instruction pipelines and the impact that their use has on the design of instruction
sets are discussed in the sections that follow.

Cycles per Instruction (C)

If the work that each instruction performs is simple and straightforward, then the
time required to execute each instruction can be shortened and the number of cycles
reduced. The goal of RISC designs is to achieve an execution rate of one machine
cycle per instruction. Techniques that allow this goal to be approached include:

® Instruction pipelines
® [.oad/Store architecture
® Delayed load instructions

® Delayed branch instructions

Instruction Pipelines

One way to reduce the number of cycles required to execute an instruction is to
overlap the execution of multiple instructions. Instruction pipelines work by divid-
ing the execution of each instruction into several discrete portions and then execut-
ing multiple instructions simultaneously. For example, the execution of an instruc-
tion might be subdivided into four portions as shown below:

Cycle Cy'cle i Cycle
#1 - (2 i #3
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In this example, four clock cycles are required to execute an instruction. An in-
struction pipeline, however, can potentially reduce the number of cycles/instruction
by a factor equal to the depth of the pipeline. For example, in the following figure,
each instruction still requires a total of four clock cycles to execute. However, if a
four-level instruction pipeline is used, a new instruction can be'initiated at each
clock cycle and the effective execution rate is one cycle per instruction. The instruc-
tion pipeline technique can be likened to an assembly line — the instruction pro-
gresses from one specialized stage to the next until it is completed just as an auto-
mobile might move along an assembly line. This is in contrast to the non-pipeline,
microcoded approach where all the work is done by one general unit, which is less
capable at each individual task.

;’, : C_lb,ck’ cycles .

Time

- Instruction#1

~ Instruction flow

Note that the previous paragraph stated that a pipeline can potentially reduce the
number of cycles/instruction by a factor equal to the depth of the pipeline. Fulfill-
ing this potential requires that the pipeline always be filled with useful instructions
and that nothing delay the advance of instructions through the pipeline. These
requirements impose certain demands on the architecture. For example, consider
the earlier example of serially executing an instruction stream where each instruc-
tion can require a different number of clock cycles. The following figure illustrates
how this instruction stream might look as it proceeds through a pipeline:
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 Serial Instruction Execution
: SHELHS #6
; (8icycles)

HEEY e #4
(8 cycles) (12:cycles)

. complex:

Emple N more complex  ‘simple! x 1
i g e : i o “instruction . instruction: instruction
L ImUHCon. - complex G L D

s ‘instructions (44 cyclesitotal. Average =17,33 cycles/instruction)::

- Pipelined Instruction Execution = L
e T it Exclusive resource
1 (8 cycles) S ™ requirements

: ipeline ‘d‘e‘la‘y éytlgs
] @0cycles) - G

(20 cycles)
| (24 cycles)

! ©(29 cycles total. ‘Average = 4.83 cycles/instruction) _,j :

In this example, the darkly-shaded cycles indicate those where the instructions re-
quire the use of the same resources (for example, the ALU, shifters, or registers).
Competition for these resources blocks the progression of the instructions through
the pipeline and causes delay cycles to be inserted for many of the instructions until
the required resources become available. The pipeline technique shortens the aver-
age number of cycles/instruction in this example, but the gains are greatly reduced
by the delay cycles that must be added.

The negative effect of the variable execution times is actually much worse than the
simple preceding example might indicate. Management of an instruction pipeline
requires proper and efficient handling of events such as branches, exceptions or
interrupts that can completely disrupt the flow of instructions. If the instruction
stream can include a variety of different instruction lengths and a mixture of delay
and normal cycles, pipeline management becomes very complex. Additionally, such
a varied, complex instruction stream makes it almost impossible for a compiler to
schedule instructions so as to reduce or eliminate delays. It is for these reasons that
a primary goal of RISC designs is to define an instruction set where execution of all,
or most, instructions requires a uniform number of cycles and, ideally, to achieve a
rate of execution of one cycle/instruction.
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Load/Store Architecture

The discussion of the instruction pipeline illustrated how each instruction can be
subdivided into several discrete parts which then permit the processor to execute
multiple instructions in parallel. For this technique to work efficiently, the time
required to execute each instruction sub-part should be approximately equal. If one
part requires an excessive length of time, then all the cycles must be made longer or
additional cycles must be used for the longer operation.

Instructions that perform operations on operands in memory tend to increase either
the cycle time or the number of cycles/instruction. Such instructions require addi-
tional time for execution to calculate the addresses of the operands, read the re-
quired operands from memory, calculate the re-ult, and store the results of the
operation back to memory. To eliminate the negative impact of such instructions,
RISC designs implement a Load/Store architecture in which all operations are per-
formed on operands held in processor registers, and main memory is accessed only
by load and store instructions. This approach produces several benefits:

® reducing the number of memory accesses eases memory bandwidth
requirements

® limiting all operations to registers helps simplify the instruction set

® climinating memory operations makes it easier for compilers to opti-
mize register allocation — this further reduces memory accesses and
also reduces the instructions/task factor.

All of these factors help RISC designs approach their goal of executing one cycle/in-
struction. However, two classes of instructions still inhibit reaching this goal — load
instructions and branch instructions. The sections that follow discuss how RISC
designs overcome obstacles raised by these classes of instructions.

Delayed Load Instructions

Load instructions read operands from memory into processor registers for subse-
quent operation by other instructions. Because memory typically operates at much
slower speeds than processor clock rates, the loaded operand is not immediately
available to subsequent instructions in a processor with an instruction pipeline. This
data dependency situation is illustrated in the following figure:
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 Load instruction #1

Data from Load
vailable as operan

In this illustration, the operand loaded by instruction #1 is not available in time for
use in the “A” cycle of instruction #2. One way to handle this dependency is to
delay the pipeline by inserting additiona! clock cycles into the execution of instruc-
tion #2 until the loaded data becomes available. This approach would obviously
introduce delays that would increase the cycles/instruction factor.

The technique used in many RISC designs to handle this data dependency is to
recognize and make visible to compilers the fact that all load instructions inherently
have a latency or load delay. In the preceding illustration, there is a load delay or
latency of one instruction. The instruction that immediately follows the load is
described as being in the load delay slot. If the instruction that is in this slot does
not require the data from the load, then no delay of the pipeline is required.

If the existence of this load delay is made visible to software, a compiler can ar-
range instructions to ensure that there is no data dependency between a load instruc-
tion and the instruction in the load delay slot. The simplest way of ensuring that
there is no data dependency is to insert a NOP (No Operation) instruction to fill the
siot:

 Load R1,A : G : s
Load = /R2,B .
‘NOP. .17 <—= this instruction fills the delay slot = =

o Add ""R3,R1,R2 G ! B

Although it eliminates the need for hardware—controlled pipeline stalls in this case,
filling the delay slot with NOP instructions still is not a very efficient use of the
pipeline stream since the NOP instructions increase the code size and perform no
useful work. (In practice, however, this technique need not have much negative
impact on performance, especially if the delay is only one cycle.)

A more effective solution to handling the data dependency situation is to fill the load
delay slot with a useful instruction. Good optimizing compilers can usually accom-
plish this, especially if the load delay is only one instruction. The following figure
illustrates how a compiler might rearrange instructions to handle a potential data
dependency:
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# Consxder the code for C := A+ B; F := D
Load: Rl A

_ Load R2;B '
. Add  R3, Rl R2 <-— this mstructlon stalls because R2 data is not avallable
: ;;Load 3 R4 D L - :

# An alternatxve code sequence (where delay Iength 1)

‘Load R1, A
Load = R2,B :

i Load  R4,D .
S Add R3, R1,R2 < no stall sihce R2 data xs avaxlable

s RS Y

i

Since the Add (add Rr3,R1,R2) instruction does not depend on the availability of the
data from the third Load instruction (Load R4,D), the delay slot (for Load R2,B) can
be filled with a usable instruction (Load R4,D) and the pipeline can be fully utilized.

Delayed Branch Instructions

Branch instructions usually delay the instruction pipeline because the processor must
calculate the effective destination of the branch and fetch that instruction. When a
cache access requires an entire cycle, and the fetched branch instruction specifies
the target address, it is impossible to perform this fetch (of the destination instruc-
tion) without delaying the pipeline for at least one pipe stage (one cycle). Condi-
tional branches may cause further delays because they require the calculation of a
condition, as well as the target address. The following figure illustrates a delay of
one pipeline stage while the instruction at the destination address is calculated and
fetched:

- Branch instruction

: A'ddre;ss_ for destination
“Hiinstruction available:

Instead of stalling the instruction pipeline to wait for the instruction at the target
address, RISC designs typically use an approach similar to that used with Load
instructions: Branch instructions are delayed and do not take effect until after one or
more instructions immediately following the Branch instruction have been executed.
The instruction or instructions in this branch delay slot are always executed, as
illustrated in the following figure.
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‘Branch instruction’

“exécuted after the ‘

Address for destination
instruction available . !

Branch instruction takes: ' .-~
effect at thlS pomt L

Ins ruction # 2 is always

Branch instruction. i

With this approach, the inherent delay associated with the branch instructions is
made visible to the software, and compilers attempt to fill the branch delay slot with
useful instructions. This task is usually not too difficult if there is only a one in-

struction delay as is the case in the following code example:

. Typical 1 RISdC—typﬁ - ’gISC—;‘y%eI :

’CISC— g . code wit . code with delay
i typ i delayed branches slots filled
I;«;;,moveuls_so a0 Jimove 50,80 S0, a0 ‘

Gimoveiiisliali
' 'addiu s0,s0,1.
iibeq 80,zero,D

emQVe, sl;al i
1addiuis0,s0,1

~so zero D

sl,al <= moved from above

move : a0,s0

addiu s0,s0,1 = addiu 50,s0,1 % ~ addiu 50,50,1

>

N

LN

: |
move : al;sli<- moved from above

: H U
bne 50,zero,C <~ orig. target + 4 4
move e.o so <= dup. target instr. <"

If the branch delay slot cannot be filled with any useful instructions, NOP instruc-
tions can be inserted to keep the instruction pipeline filled. Usually, however, a
compiler can fill the slot with useful instructions. The preceding example illustrates

two different techniques used to fill the slot:

e Often, an instruction that occurs before the branch can be executed
after the branch without affecting the logic or the Branch instruction
itself. Thus, in the example, the move sl,al and move al,sl instruc-
tions can be moved from their original positions to the delay slots
without changing the logic of the program.

e The original target instruction of the bne instruction was the move a0,s0
instruction at label B:. In the example, this instruction is duplicated in

1-10 R2000 Architecture




RISC Architecture
An Overview

the delay slot following the bre instruction and the target of the bne
instruction is changed to be the instruction at label C:. Note that while
this technique increases the static number of instructions by one, it
does not increase the dynamic instruction count: the same number of
instructions are executed during the program as in the CISC-type code
illustrated in the example.

Time per Cycle (T)

The time required to perform a single machine cycle is determined by such factors
as:

Instruction decode time.

Instruction operation time.

Instruction access time (memory bandwidth).
® Architectural simplicity.

Many of the same design approaches that reduce the number of cycles/instruction
also help reduce the time/cycle. For example, dividing up an instruction’s execution
into several discrete stages to implement the instruction pipeline can also result in
reducing the time required to execute a cycle.

Instruction Decode Time

The time required to decode instructions is partly related to the number of instruc-
tions in the instruction set and the variety of instruction formats supported. Thus,
simple, uniform RISC instruction sets minimize the instruction decode circuitry and
time requirements. For example, if the instruction formats are uniform, with con-
sistent use of bit fields within the instructions, then the processor can decode multi-
ple fields simultaneously to speed the process. In addition to providing instructions
only to perform simple tasks, RISC designs also reduce the number of options such
as addressing modes-to further-reduce-the number of possible instruction formats.

instruction Operation Time

For CISC architectures, instruction operation time is usually measured in multiples
of cycles. RISC designs, however, strive to make all instructions execute within a
single cycle and, further, to make that cycle time as short as possible. Many of the
techniques discussed earlier under the category of reducing the number of cycles/in-

struction also help reduce instruction operation time. For example, the time re-
quired for register—to-register operations is much less than the time needed to oper-
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ate on memory operands. Thus, the load/store architectural approach described
earlier also helps reduce the cycle time.

Instruction Access Time (Memory Bandwidth)

The time needed to access (fetch) an instruction is largely a function of the memory
system supported and often becomes the limiting factor in RISC-type designs be-
cause of the high rate at which instructions can be executed. While the load/store
architecture (discussed earlier in this chapter) common to RISC designs helps re-
duce memory bandwidth requirements, achieving an execution rate of one cycle/in-
struction is impossible unless the memory system can deliver instructions at the
cycle rate of the processor. A variety of techniques are used to obtain the required
memory bandwidth needed to support the high-performance RISC designs. Two
common techniques are:

® Supporting hierarchical memory systems using high-speed cache
memory to provide the primary, re-usable pool of instructions and
data that are frequently accessed by the processor. Figure 1.1 illus-
trates the functional position of cache memory in a hierarchical mem-
ory system.

Processor

Data

High-Speed | ¢
Cache

Data Address
Main Memory

Figure 1.1 Functional Position of Cache in a Hierarchical Memory System

® Supporting separate caches for instructions and data to double the
effective cache memory bandwidth. The access time of the cache
memory devices can be the factor limiting the processor’s throughput;
the use of separate caches lets the processor alternate accesses be-
tween instruction cache and data cache. Figure 1.2 illustrates a mem-
ory system with separate caches for instructions and data.
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Processor
Data
Instruction
Cache
Data
Cache
Data Address
Main Memory

Figure 1.2 An R2000 System with a High—Performance Memory System

The use of separate caches for data and instructions has an additional benefit be-
yond decreasing the access time: the locality of a set of instructions or a set of data
is typically much higher than that of a mixture of instructions and data. Therefore,
for most programs, data and instructions held in separate caches are more likely to
be re-usable than if a common, shared cache were used.

Another technique that helps minimize the time required to fetch an instruction is to
require that all instructions be of a uniform length (a fixed number of bits) and that
they always be aligned on a regular boundary. For example, many RISC processors
define all instructions to be 32 bits wide and require that they be aligned on word
boundaries. This approach eliminates the possibility of a single instruction extend-
ing across a word boundary (requiring multiple fetches) or across a memory man-
agement boundary (requiring multiple address translations).

Overall Architectural Simplicity

The general simplicity of RISC architectures allows streamlining of the entire ma-
chine’s organization. As a result, the overhead on each instruction can be reduced
and the clock cycle can be shortened, as designers are able to focus on optimizing a
small number of critical processor features. The general simplicity of the machine
also allows the use of more aggressive semiconductor process technologies in the
manufacture of the processor. More aggressive process technologies provide the
potential for faster performance.
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Instructions per Task ()

This factor of the performance equation is the one where RISC designs are most
vulnerable and has been the source of most of the criticisms that were initially
directed at RISC designs. Since RISC processors implement the more complex
operations performed by CISC processors using a series of simple instructions, the
total number of instructions required to perform a given task tends to increase as the
complexity of the instruction set decreases. Therefore, a given program or algo-
rithm written using the instruction set for a RISC processor tends to have more
instructions than the same task written using the instruction set for a CISC proces-
sor.

However, advances in RISC techniques has done much to mitigate this negative
tendency and, for many algorithms, the dynamic instruction count for good RISC
processors is not significantly different than for CISC processors. The primary
techniques that help reduce the instructions/task factor are:

® Optimizing compilers

® Operating system support

Optimizing Compilers

Reliance on high-level languages (HLL) has been increasing for many years while
the importance of assembly language programming has diminished. This trend has
led to an emphasis on the use of efficient compilers to convert HLL instructions to
machine instructions. Primary measures of a compiler’s efficiency are the compact-
ness of the code it generates and the execution time of that code. Modern, optimiz-
ing compilers have evolved to provide great efficiency in the HLL-to-machine lan-
guage translation.

There is nothing about optimizing compilers that is inherently RISC-oriented; many
of the techniques they use were developed before the current generation of RISC
architectures arrived and are applied to RISC and CISC machines alike. There is,
however, a synergistic relationship between optimizing compilers and RISC architec-
tures — compilers can do their best job of optimization with a RISC architecture,
and RISC-type computers, in many cases, rely on compilers to obtain their full
performance capabilities.

During the development of more efficient compilers, an analysis of instruction
streams revealed that most time was spent executing simple instructions and per-
forming load and store operations — more complex instructions were little used. It
was also learned that compilers produced code that was often a narrow subset of a
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processor’s architecture: complex instructions and features were not usable by com-
pilers.

It might seem illogical that people writing compilers would end up ignoring the most
powerful instructions and preferring the simpler ones, but it happens because the
powerful instructions are hard for a compiler to use or because the instructions
don’t precisely fit the HLL requirements. A compiler prefers instructions that per-
form simple, well-defined operations with minimum side-effects. Since these char-
acteristics are typical of a RISC instruction set, there is a natural match between
RISC architectures and efficient, optimizing compilers. This match makes it easier
for compilers to choose the most effective sequences of a machine’s instructions to
accomplish the tasks described by a high-level language.

Optimizing Techniques An examination of some of the techniques that compilers
use to optimize programs will make the match between compilers and RISC archi-
tectures more apparent.

® Register allocation. The compiler allocates processor registers to hold
frequently used data and thus reduce the number of load/store opera-
tions. The following simple example illustrates how careful register
allocation can reduce the number of instructions required to perform a
task:

# task is A:=B + C
Load. R1,B
Load  R2.C
Add R3,R1,R2
Store R3,A
# 1If A, B, and C are allocated to registers

Add © Ra,Rb,Rc

In this simple example, the two Load instructions are eliminated since
the required values are already available in registers and the Store
instruction is not needed since the compiler will hold the result of the
Add in a register for future use.

® Redundancy elimination. The compiler looks for opportunities to re-
use results and thus eliminate redundant computations.

® Loop optimization. A compiler optimizes loop operations by recogniz-
ing variables and expressions that don’t change during a loop and
moving them outside the loop.

® Replace slow operations with faster ones. A compiler searches for situ-
ations where slow operations, such as special cases of a multiply or
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divide, can be replaced with faster operations, such as shift and add
instructions.

® Strength reduction. This technique consists of replacing “expensive”
operations with cheaper ones. For example, multi-dimension arrays
are often indexed using a combination of several multiplication and
addition operations. Strength reduction might simplify the index cal-
culation by using a previously calculated address and a simple addi-
tion operation.

® Pipeline scheduling. The compiler schedules and reorganizes instruc-
tions to ensure that pipeline delay slots are filled with useful instruc-
tions as illustrated earlier in the description of load and branch delays.

Again note that none of the techniques described above are uniquely linked to RISC
architectures. However, the simplicity of a RISC machine makes it inherently easier
for a compiler to discover optimization opportunities and implement these optimiza-
tions with a clear view of their effects.

Optimization Levels The development of optimizing compilers has produced its own
terminology. This section describes the terms commonly used to categorize the
various levels of optimization performed by compilers. The optimization techniques
used can be divided into four levels according to their scope and degree of difficulty:

® Peephole optimization attempts to make improvements in code size or
performance within a narrow context. -An example of this level is
replacing slower operations with faster ones.

® Local optimization makes decisions based on views of multiple-instruc-
tion sequences. An example of this level is to examine sequences of
instructions to determine the best prologue/epilogue to use as the en-
try/exit code for a function. Other examples include keeping values in
registers over short periods of time, and eliminating branch instruc-
tions whose target is another branch instruction.

® Global optimization optimizes program control flow by enhancing
branch and loop structures and by performing strength reduction.

® Inter-procedural optimization This level is rarely performed because
techniques like the following are just being developed:

O Allocating register assignments to maximize their life between
procedures.

O Merging procedures and converting appropriate procedures to
in-line code to reduce overhead.
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Operating System Support

The performance gains obtained by providing support for operating systems are
often subtle and not as easily defined or measured as with some of the other RISC
techniques. While CISC architectures typically provide elaborate support for operat-
ing systems, the RISC approach emphasizes appropriate support. The appropriate-
ness is based on a rigorous evaluation of the performance gains that can be obtained
by the support of any particular function. The guiding principles are to avoid unnec-
essary complexity unless justified by statistics of actual usage, and to simplify and
streamline operations required most frequently by operating systems.

The learning path here parallels the one traveled during exploration of compiler
efficiencies — trying to put features supporting high-level languages into hardware
often frustrated compiler writers. Similarly, putting special features into hardware
to support operating systems does not always match the real needs of operating
systems. With compilers, it was learned that the special instructions intended to
simplify support of high-level languages were not often used by compilers. Simi-
larly, it has been found that special hardware features for operating systems may
also miss their mark. Often, the most efficient way of supporting an operating
system is to just provide it with raw speed and with simple, minimal controls.

£ ¢+l 1htl slainl DTQ _¢erem
The paragraphs that follow illustrate some of the subtle ways in which RISC-type

designs can supply appropriate operating system support to enhance performance
without adding unacceptable complexity to the hardware:

Virtual Memory System. Translation Lookaside Buffers (TLBs) provide the virtual-
to-physical address translation that is essential to implementing a powerful operat-
ing system. While there is nothing about TLBs that is RISC-specific, the chip area
gained by overall simplification of the processor can be used to implement (larger)
on-chip TLBs. An on-chip TLB enhances performance by eliminating the cycle(s)
otherwise required to transfer the virtual address to an external TLB.

Modes And Protection. Operating systems require some mechanisms for controlling
user access to system and processor resources. CISC processors often provide a
variety of operating modes and protection mechanisms. Multiple modes and protec-
tion schemes add complexity to the hardware, however, and experience teaches that
there is seldom a complete match between these mechanisms and operating system
requirements. The RISC approach is to supply limited control and protection
mechanisms: a simple kernel/privileged, user/unprivileged mode differentiation is
usually sufficient. More elaborate schemes can then be implemented as needed in
the kernel software.

Interrupts And Traps. Many CISC processors provide extensive hardware support
for responding to interrupts and traps by saving a lot of state information and by
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generating numerous vector addresses to which control is transferred in response to
exceptions. This support adds complexity to the hardware but does not necessarily
produce corresponding simplification of the operating system’s tasks. For example,
many operating systems do not really need or use numerous distinct exception vec-
tor addresses: instead, they first execute a common interrupt handler which then
does the work to determine the specific processing needed for the exception. The
operating system itself might then determine what state information (if any) needs
to be saved. This approach results in simplified hardware and lets the appropriate
complexity be provided by the operating system as needed.

Special-function Instructions. Note that we have made no mention of special in-
structions to simplify and support operating system activities. Once again, the rule
of simplicity and appropriateness argues against the inclusion of special instructions.
Even in cases where significant time is spent in an operating system, the bulk of the
time is spent executing general code rather than performing special functions.
Thus, it is more efficient to let the operating system use the standard, simple, non-
specialized instructions to perform all of its functions.

The RISC Design Process

The RISC design process is, at its best, an iterative process that uses feedback to
tune the design. For example, MIPS Computer Systems started with the knowledge
of earlier RISC efforts, including especially the Stanford University MIPS research
work, and also started with the optimizing compilers from that effort. Based on that
previous experience, a base-level instruction set was proposed, and measurements
were taken from simulations of code compiled with the existing optimizers. Propos-
als for additions to the instruction set were carefully weighed to verify that they
actually improved performance. Specifically, MIPS used the rule that any instruc-
tion added for performance reasons had to provide a verifiable 1% performance
gain over a range of applications or else the instruction was rejected.

The result of this approach is an instruction set that is very well-tuned for high-level
language use. Every instruction is either structurally necessary (such as Restore

Fram pvr\nr\hnn\ all H i
From Exception) or can naturally be generated by compilers. This stands in con-

trast to many other machines, even ones also labeled RISC, that often have user-
level instructions or instruction mode combinations that are very difficult to reach
from compiled languages.

These same stringent requirements were applied to the many different memory-
management alternatives that were proposed and simulated before the final design
for the R2000 was chosen. All functions and features which complicated the design
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had to be empirically proven to be performance enhancing within the complete sys-
tem concept before they might be included.

Hidden Benefits of RISC Design

Some of the important benefits that results from the RISC design techniques are not
attributable to the architectural characteristics adopted to enhance performance but
are a result of the overall reduction in complexity: the simpler design allows both
chip-area resources and human resources to be applied to features that enhance
performance.

Shorter Design Cycle

The simplified architectures of RISC processors can be implemented more quickly:
it is much easier to implement and debug a streamlined, simplified architecture with
no microcode than a complex, microcoded architecture. CISC processors have such
a long design cycle that they are often not fully debugged until the technology in
which they were designed is obsolete. The shorter time required to design and im-
plement RISC processors lets them make use of the best available technologies.

Smaller Chip Size

The simplicity of RISC processors also frees scarce chip-area resources for per-
formance-critical structures like larger register files, translation-lookaside-buffers
(TLB’s), coprocessors, and fast multiply-divide units. These additional resources
help these processors obtain an even greater performance edge.

User (Programmer) Benefits

Somewhat surprisingly, simplicity in architecture also helps the user:
® The uniform instruction set is easier to use.

o There is a closer correlation between instruction count and cycle count
making it much easier to measure the true impact of code optimization
activities.

® Programmers can have a higher confidence in hardware correctness.

Most Aggressive Semiconductor Technologies

Finally, as new VLSI implementation technologies are developed, they are always
introduced with tight limits on the number of transistors than can fit on each chip.

R2000 Architecture 1-19



Chapter 1

The simplicity of a RISC architecture allows it to be implemented in far fewer tran-
sistors than CISC architectures. The result is that the first computers capable of
exploiting the new VLSI technologies (for example, VLSI ECL, VLSI GaAs) will use
RISC architectures. Therefore, RISC processors can always use the most advanced
technologies and reap the performance benefits before those technologies become
usable by CISC processors.
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R2000 Processor Overview

The MIPS R2000 Processor consists of two tightly-coupled processors implemented
on a single chip. The first processor is a full 32-bit RISC CPU. The second proces-
sor is a system control coprocessor (CP0), containing a TLB (Translation Lookaside
Buffer) and control registers to support a virtual memory subsystem and separate
caches for instructions and data. Figure 2.1 shows the functions incorporated within
the R2000.

CPO  como  CPU

~ (System Control Coprocessor)

l Master Pipeline / Bus Control | ‘ _
Exception / Control | ’ General Registers |
egisters o ' (32x32)
Memory | Local ALU
Management Control Shifter
Unit Registers ontrol Multiplier/Divider
Ir()agksal‘%tilgg | togie | Address Adder
Buffer :
(64 entries) L1 PC Increment/Mux

Virtual Page Number/Virtual Address

l

 Data(32+4)

. Address(16)

Figure 2.1 R2000 Functional Block Diagram
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R2000 Processor Features

Full 32-bit Operation. The R2000 contains thirty-two 32-bit registers,
and all instructions and addresses are 32 bits.

Efficient Pipelining. The CPU’s 5-stage pipeline design assists in ob-
taining an execution rate approaching one instruction per cycle. Pipe-
line stalls and exceptional events are handled precisely and efficiently.

On-chip Cache Control. The R2000 provides a high-bandwidth mem-
ory interface that handles separate external Instruction and Data
caches ranging in size from 4 to 64 Kbytes each. Both caches are
accessed during a single CPU cycle. All cache control logic is on chip.

On-chip Memory Management Unit. a fully-associative, 64-entry
Translation Lookaside Buffer (TLB) provides fast address translation
for virtual-to-physical memory mapping of the 4-Gbyte virtual ad-
dress space.

Coprocessor Interface. the R2000 generates all addresses and handles
memory interface control for up to three additional tightly-coupled
external coprocessors.

R2000 CPU Registers

The R2000 CPU provides 32 general purpose 32-bit registers, a 32-bit Program
Counter, and two 32-bit registers that hold the results of integer multiply and divide
operations. The CPU registers are shown in Figure 2.2 and are described in detail
Note that there is no Program Status Word (PSW) register
shown in this figure: the functions traditionally provided by a PSW register are
instead provided in the Status and Cause registers incorporated within the System

later in this chapter.

Control Coprocessor (CP0).
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__General Purpose Registers

3 ~ 0 Multiply / Divide Registers
0 31 ' 0
r1 HI |
r2 31 , .0
. | LO |
° g -
[ )
e .

‘Program Counter , .
r29 ‘31 G G 0
130 . N PC |
r31 ' -
Figure 2.2 R2000 CPU Registers

Instruction Set Overview

All R2000 instructions are 32 bits long and there are only three instruction formats
as shown in Figure 2.3. This approach simplifies instruction decoding. More com-
plicated (and less frequently used) operations and addressing modes can be synthe-
sized by the compiler using sequences of simple instructions.

-Type (Immediate)
B cx 2625 21207 1615

G 0

Lop [rs[rt]

J-Type (ump)

immediate — | .

31 26 25 i B
L op | target |
R-Type (Register) .
.31 2625 2120 1615 1110 65 0

| op [rs [rt ]rdTre [funct

Figure 2.3 R2000 Instruction Formats
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The R2000 instruction set can be divided into the following groups:

e Load/Store instructions move data between memory and general regis-
ters. They are all I-type instructions, since the only addressing mode
supported is base register plus 16-bit, signed immediate offset.

e Computational instructions perform arithmetic, logical and shift op-
erations on values in registers. They occur in both R-type (both oper-
ands and the result are registers) and I-type (one operand is a 16-bit
immediate) formats.

e Jump and Branch instructions change the control flow of a program.
Jumps are always to a paged absolute address formed by combining a
26-bit target with four bits of the Program Counter (J-type format, for
subroutine calls) or 32-bit register addresses (R-type, for returns and
dispatches). Branches have 16-bit offsets relative to the program
counter (I-type). Jump and Link instructions save a return address in
Register 31.

e Coprocessor instructions perform operations in the coprocessors.
Coprocessor Loads and Stores are I-type. Coprocessor computational
instructions have coprocessor-dependent formats (see the R2010 FPA

H 2 H PSP,

. ral ™ e AY
HDDUUCUVIN 11 vlaaper 7).

® Coprocessor 0 instructions perform operations on the System Control
Coprocessor (CP0) registers to manipulate the memory management
and exception handling facilities of the processor.

e Special instructions perform a variety of tasks, including movement of
data between special and general registers, system calls, and break-
point. They are always R-type.

Table 2.1 lists the instruction set of the R2000 Processor. A more detailed summary
is provided in Chapter 3 and a complete description of each instruction is contained
in Appendix A.
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OP Description OP Description
Load/Store Instructions Multiply/Divide Instructions
L8 Load Byte MULT | Muttiply
LBU | Load Byte Unsigned MULTU | Multiply Unsigned
LH Load Halfword DIV Divide
LHU Load Halfword Unsigned DIVU Divide Unsigned
LW Load Word
LWL | Load Word Left MFHI Move From HI
LWR | Load Word Right MTHI Move To HI
2 | sore oy S |toveFrom 0
SH Store Halfword )
Sw Store Word Jump and Branch Instructions
SWL Store Word Left J Jump
SWR Store Word Right JAL Jump And Link
Arithmetic Instructions JR Jump to Register
(ALU Immediate) JALR Jump And Link Register
ADDI Add Immediate BEQ Branch on Equal
ADDIU | Add Immediate Unsigned BNE Branch on Not Equal
SLTI Set on Less Than Immediate BLEZ Branch on Less than or Equal to Zero
SLTIU | Set on Less Than Immediate BGTZ Branch on Greater Than Zero
Unsigned BLTZ Branch on Less Than Zero
ANDI | AND Immediate BGEZ Branch on Greater than or
ORI OR Immediate Equal to Zero
XORI | Exclusive OR Immediate BLTZAL | Branch on Less Than Zero And Link
Lyl Load Upper immediate BGEZAL | Branch on Greater than or Equal to
Arithmetic Instructions Zero And Link
(3-operand, register-type) Coprocessor Instructions
ADD Add LWCz Load Word from Coprocessor
ADDU | Add Unsigned SWCz | Store Word to Coprgcessor
SuB Subtract MTCz Move To Coprocessor
SuBU Subtract Unsigned MFCz Move From Coprocessor
SLT Set on Less Than CTCz Move Control to Coprocessor
?\II:JBU i:"DO“ Less Than Unsigned CFCz Move Control From Coprocessor
COPz Coprocessor Operation
OR OR BCzT Brar:\ch on Copl?ocessor z True
),382 i’g&“s"’e OR BCzF Branch on Coprocessor z False
Shift Instructions System Control Coprocessor
SLL Shift Left Logical (CPO) Instructions
SRL Shift Right Logical
SRA | shift Right Arithmetic MTCO | Move To CPO_
SLLV Shift Left Logical Variable )
SRLV | Shift Right Logical Variable TLBR = | Read indexed TLB entry
SRAV | Shift Right Arithmetic Variable TLBWI | Write Indexed TLB entry
Special Instructions TLBWR | Write Random TLB entry
pecial ‘nstructio TLBP | Probe TLB for matching ent
SYSCALL| System Call Ing entry
BREAK Break RFE Restore From Exception

Table 2.1 R2000 Instruction Summary
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R2000 Processor Programming Model

This section describes organization of data in registers and in memory and the set of
general registers available. It also gives a summary description of all the R2000
CPU registers.

Data Formats and Addressing

The R2000 defines a 32-bit word, a 16-bit half word and an 8-bit byte. The byte
ordering is configurable (configuration occurs during hardware reset) into either
big—endian or little—endian byte ordering:

® When configured as a big-endian system, byte 0 is al-
ways the most significant (leftmost) byte, thereby pro-
viding compatibility with MC 68000® and IBM 370®
conventions.

® When configured as a little-endian system, byte 0 is al-
ways the least significant (rightmost) byte, which is com-
patible with iAPX® x86, NS 32000®, and DEC VAX®
conventions.

For purposes of exposition, bit 0 is always the least significant (rightmost) bit; thus
bit designations are always little-endian (although no instructions explicitly desig-
nate bit positions within words).

Figures 2.4 and 2.5 show the ordering of bytes within words and the ordering of
words within multiple-word structures for the big-endian and little-endian conven-
tions.

Blg Endian -
2423 1615 87 0 29
5 9 10 11 8
4 5 6 7 4
0 1 2 0

) ':_ Most sugnmcant byte is at Iowest address

- Word is addressed by byte address of most
'gnmcant byte. : -

Figure 2.4 Addresses of Bytes within Words: Big Endian
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Higher

Little Endian

: . Word
A dres’s 37 24 23 16 15 8 7 0 Address -
A In 10 9 8 .8
7 6 5 4 4
3 2 1 0 0
Lower  ® |east significant byte is at lowest address.
- @ Word is addressed by byte address of least

Addre’ss .

significant byte,

Figure 2.5 Addresses of Bytes within Words: Little Endian

The R2000 uses byte addressing, with alignment constraints, for half word and word
accesses; half word accesses must be aligned on an even byte boundary and word
accesses must be aligned on a byte boundary divisible by four.

As shown in Figures 2.4 and 2.5, the address of a multiple-byte data item is the
address of the most-significant byte on a big-endian configuration, and is the ad-
dress of the least-significant byte on a little—endian configuration.

Special instructions are provided for addressing words that are not aligned on 4-byte
(word) boundaries (Load/Store-Word-Left/Right; LWL, LWR, SWL, SWR). These
instructions are used in pairs to provide addressing of misaligned words with one
additional instruction cycle over that required for aligned words. Figure 2.6 shows

the bytes accessed when addressing a misaligned word with a byte address of 3 for
each of the two conventions.

s, M1 2423 1615 87 0
Higher Lo ‘ ,
Adaress L  Big
A . =
 Little

e _Endian
Lower e
Address .

Figure 2.6 Misaligned Word: Byte Addresses
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R2000 CPU General Registers

Figure 2.7 shows the R2000 CPU registers. There are 32 general registers, each
consisting of a single word (32 bits). The 32 general registers are treated symmetri-
cally, with two exceptions: r0 is hardwired to a zero value, and r3/ is the link
register for Jump And Link instructions.

Register r0 may be specified as a target register for any instruction when the result
of the operation is discarded. The register maintains a value of zero under all condi-
tions when used as a source register.

The two Multiply/Divide registers (HI, LO) store the double-word, 64-bit result of
multiply operations and the quotient and remainder of divide operations.

NOTE: In addition to the CPU’s general registers, the system control coprocessor
(CP0) has a number of special purpose registers that are used in conjunction with
the memory management system and during exception processing. Refer to Chapter
4 for a description of the memory management registers and to Chapter 5 for a
discussion of the exception handling registers.

General Purpose Registers o

(1]
r1
r2

32

[ ]
[ ]
r29

r30
r31

(o]

iv‘luitibiy/Di_vide Regisfers
Hi
LO

__Program Counter 0
PC |

(]
N

w
N

Figure 2.7 R2000 CPU Registers
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R2000 System Control Coprocessor (CPO0)

The R2000 can operate with up to four tightly-coupled coprocessors (designated
CP0 through CP3). The System Control Coprocessor (or CP0), is incorporated on
the R2000 chip and supports the virtual memory system and exception handling
functions of the R2000. The virtual memory system is implemented using a Transla-
tion Lookaside Buffer and a group of programmable registers as shown in

Figure 2.8.

CPO Registers
Memory Management & Exception Handling

EntryHi | EntryLo  Status | cause
Register | Register Register _ Register
Index ' Context EPC
TLB Register ister
(Transiation Register v - Register
Lookaside
Buffer) T e
Random I  BadVA I . PRId o
Register _Register .Register
Used with Virtual Memory Used with Exception
.| Processing. See
a{s:jeer:\a.“ss. ee Chapter 4. ~1 Chapter 5 for details.

Figure 2.8 The CPO Registers

System Control Coprocessor (CP0) Registers

The CPO registers shown in Figure 2.8 are used to manipulate the memory manage-
ment and exception handling capabilities of the R2000. Table 2.2 provides a brief
description of each register. Refer to Chapter 4 for a detailed description of the
registers associated with the virtual memory system and refer to Chapter 5 for de-
scriptions of the exception processing registers.
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'B:ﬁegi_stef;‘f' :";:D:észéflip‘ibn‘ S o
EntryHi High half of a TLB entry
EntryLo Low half of a TLB entry

Index Programmable pointer into TLB array
Random | Pseudo-random pointer into TLB array

Status Mode, interrupt enables, and diagnostic status info
Cause Indicates nature of last exception
EPC Exception Program Counter

Context Pointer into kernel's virtual Page Table Entry array
BadVvA Most recent bad virtual address

PRId Processor revision identification

Table 2.2 System Control Coprocessor (CP0O) Registers

Memory Management System

The R2000 has an addressing range of 4 Gbytes. However, since most R2000 sys-
tems implement a physical memory smaller than 4 Gbytes, the R2000 provides for
the logical expansion of memory space by translating addresses composed in a large
virtual address space into available physical memory addresses. The 4 GByte ad-
dress space is divided into 2 Gbytes for users and 2 GBytes for the kernel.

The TLB (Translation Lookaside Buffer)

Virtual memory mapping is assisted by the Translation Lookaside Buffer (TLB).
The on-chip TLB provides very fast virtual memory access and is well-matched to
the requirements of multi-tasking operating systems. The fully-associative TLB
contains 64 entries, each of which maps a 4-Kbyte page, with controls for read/write
access, cacheability, and process identification. The TLB allows each user to access
up to 2 Gbytes of virtual address space.

R2000 Operating Modes

The R2000 has two operating modes: User mode and Kernel mode. The R2000
normally operates in the User mode until an exception is detected forcing it into the
Kernel mode. It remains in the Kernel mode until a Restore From Exception (RFE)
instruction is executed. The manner in which memory addresses are translated or
mapped depends on the operating mode of the R2000. Figure 2.9 shows the virtual
address space for the two operating modes.
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Figure 2.9 R2000 Virtual Addressing

User Mode. In this mode, a single, uniform virtual address space (kuseg) of 2
Gbyte is available. Each virtual address is extended with a 6-bit process identifier
field to form unique virtual addresses for up to 64 user processes. All references to
this segment are mapped through the TLB. Use of the cache is determined by bit
settings for each page within the TLB entries.

Kernel Mode. Four separate segments are defined in this mode:

® kuseg. When in the Kernel mode, references to this segment are
treated just like User mode references, thus streamlining kernel access
to user data.

® kseg0. References to this 512-Mbyte segment use cache memory but
are not mapped through the TLB. Instead, they always map to the
first 0.5 GBytes of physical memory.

® ksegl. References to this 512-Mbyte segment are not mapped through
the TLB and do not use the cache. Instead, they are hard-mapped
into the same 0.5-GByte segment of physical memory space as kseg0.
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® kseg2. References to this 1-Gbyte segment are always mapped
through the TLB, and use of the cache is determined by bit settings
within the TLB entries.

R2000 Pipeline Architecture

The execution of a single R2000 instruction consists of five primary steps:

1) IF—Fetch the instruction (I-Cache).

2) RD—Read any required operands from CPU registers while decod-
ing the instruction.

3) ALU—Perform the required operation on instruction operands.
4) MEM—Access memory (D-Cache).
5) WB—Write back results to register file.
Each of these steps requires approximately one CPU cycle as shown in Figure 2.9

(parts of some operations lap over into another cycle while other operations require
only 1/2 cycle).

|nstruct|on Executlon

n= 1 RD ALUMEM
11 Cache | RF| OP _|D-CACHE

~ one cycle

Figure 2.9 Instruction Execution Sequence

The R2000 uses a S5-stage pipeline to achieve an instruction execution rate ap-
proaching one instruction per CPU cycle. Thus, execution of five instructions at a
time are overlapped as shown in Figure 2.10.
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~ R2000 Instruction Plpehne
. i (5—deep)

u= | RD IALU LMEM
el IFJ RD [ALU'

WB] .
MEM[WBI
: ALU[MEMIWB S
RD ALU]MEM WB |

* Instruction’

Figure 2.10 R2000 Instruction Pipeline

This pipeline operates efficiently because different CPU resources (address and data
bus accesses, ALU operations, register accesses, and so on) are utilized on a non-
interfering basis. Refer to Chapter 3 for a detailed discussion of the instruction
pipeline.

Memory System Hierarchy

The high performance capabilities of the R2000 Processor demand system configu-
rations incorporating techniques frequently employed in large, mainframe comput-
ers but seldom encountered in systems based on more traditional microprocessors.

A primary goal of RISC machines is to achieve an instruction execution rate of one
instruction per CPU cycle. The MIPS R2000 approaches this goal by means of a
compact and uniform instruction set, a deep instruction pipeline (as described
above), and careful adaptation to optimizing compilers. Many of the advantages
obtained from these techniques can, however, be negated by an inefficient memory
system.

Figure 2.11 illustrates memory in a simple microprocessor system. In this system,
the CPU outputs addresses to memory and reads instructions and data from memory
or writes data to memory. The memory space is completely undifferentiated: in-
structions, data, and I/O devices are all treated the same. In such a system, a
primary limiting performance factor is memory bandwidth.
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Microprocessor
(CPU)

Data _ Address

nao)

Figure 2.11 A Simple Microprocessor Memory System

Figure 2.12 illustrates a memory system that supports the significantly greater mem-
ory bandwidth required to take full advantage of the R2000’s performance capabili-
ties. The key features of this system are:

® External Cache Memory. Local, high-speed memory (called cache
memory) is used to hold instructions and data that is repetitively ac-
cessed by the CPU (for example, within a program loop) and thus
reduces the number of references that must be made to the slower
speed main memory. Some microprocessors provide a limited amount
of cache memory on the CPU chip itself. The external caches sup-
ported by the R2000 can be much larger; while a small cache can
improve performance of some programs, significant improvements for
a wide range of programs require large caches.

® Separate Caches for Data and Instructions. Even with high-speed
caches, memory speed can still be a limiting factor because of the fast
cycle time of a high-performance microprocessor. The R2000 sup-
ports separate caches for instructions and data and alternates accesses
of the two caches during each CPU cycle. Thus, the processor can
obtain data and instructions at the cycle rate of the CPU using caches
constructed with commercially available static RAM devices.

® Write Buffer. In order to ensure data consistency, all data that is
written to the data cache must also be written out to main memory.
To relieve the CPU of this responsibility (and the inherent perform-
ance burden) the R2000 supports an interface to a write buffer. The
R2020 Write Buffer captures data and addresses output by the CPU
and ensures that the data is passed on to main memory.
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3
R2000 Instruction Set Summary

This chapter provides an overview of the R2000 instruction set by presenting each
category of instructions in a tabular summary form. It also provides a detailed
discussion of the instruction pipeline. Refer to Appendix A for a detailed descrip-
tion of each instruction.

Instruction Formats

Every R2000 instruction consists of a single word (32 bits) aligned on a word bound-
ary. There are only three instruction formats as shown in Figure 3.1. This ap-
proach simplifies instruction decoding. More complicated (and less frequently used)
operations and addressing modes can be synthesized by the compiler.

- -—Type (Immediate) v o
. 2625 2120 1615 .0

 Lop [ rs [ rt | immediate ]

J-Type (Jump)

op | target

GO
.

R-Type (Reglster) o
31 2625 2120 1615 1110 65 0
op [ rs | t | rd [shamf funct ]

(R

where: .
| op is a 6-bit operation code

rs is a S-bit source register specifier
re is_a S-bit target (source/destination)
register or branch condition
immediate| is a 16-bit immediate, branch dis-
placement or address displacement

target is a 26-bit jump target address

rd is a 5-bit destination register specifier
shamt is a 5-bit shift amount

Sfunct is a 6-bit function field

Figure 3.1 R2000 Instruction Formats
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Instruction Notational Conventions

In this manual, all variable sub-fields in an instruction format (such as rs, rt, imme-
diate, and so on) are shown in lower-case names.

For the sake of clarity, an alias is sometimes used for a variable sub-field in the
formats of specific instructions. For example, rs = base in the format for Load and
Store instructions. Such an alias is always lower case, since it refers to a variable
sub-field.

Instruction opcodes are shown in all upper case.

The actual bit encoding for all the mnemonics is specified at the end of Appendix A.

Load and Store Instructions

Load/Store instructions move data between memory and general registers. They are
all I-type instructions. The only addressing mode directly supported is base register
plus 16-bit signed immediate offset.

All load operations have a latency of one instruction. That is, the data being loaded
from memory into a register is not available to the instruction that immediately
follows the load instruction: the data is available to the second instruction after the
load instruction. An exception is the target register for the “load word left” and
“load word right” instructions, which may be specified as the same register used as
the destination of a load instruction that immediately precedes it. (Refer to R2000
Instruction Pipeline at the end of this chapter for a detailed discussion of load
instruction latency.)

The Load/Store instruction opcode determines the access type which indicates the
size of the data item to be loaded or stored as shown in Table 3.2. Regardless of
access type or byte-numbering order (endian-ness), the address specifies the byte
which has the smallest byte address of all the bytes in the addressed field. For a
big-endian machine, this is the most significant byte; for a little-endian machine,
this is the least significant byte.

The bytes within the addressed word that are used can be determined directly from
the access type and the two low-order bits of the address, as shown in Table 3.2.
Note that certain combinations of access type and low-order address bits can never
occur: only the combinations shown in Table 3.2 are permissible.
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A1c_:cess Low-Order Bytes Accessed
e Address - :
P Bits Big-Endian Little-Endian
1.0 1.0 31 0
11
(word) 0 0
10 0 0
(triple-byte) 0 1
0 1 0 O
(halfword) 1 0
0 0 0 0
(byte) 0 1
1.0
101

Table 3.2 Byte Specifications for Loads/Stores

Table 3.3 summarizes the R2000 Load and Store instructions.

R2000 Architecture
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Instruction Format and Description | op |[base| rt

Load Byte LB nt,offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed byte and load into rt.

Load Byte LBU rt,offset(base)

Unsigned Sign-extend 16-bit offset and add to contents of register base to form address.

Zero —extend contents of addressed byte and load into rt.

Load Halfword

LH  rt,offset(base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed halfword and load into rt.

Load Halfword

LHU rt,offset(base)

Unsigned Sign-extend 16-bit offset and add to contents of register base to form address.
Zero -extend contents of addressed halfword and load into rt.

Load Word LW rt,offset(base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Load contents of addressed word into register rt.

Load Word LWL rt,offset(base)

Left Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word left so that addressed byte is leftmost byte of a word.
Merge bytes from memory with contents of register rt and load result
into register rt.

Load Word LWR rt,offset(base)

Right Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word right so that addressed byte is rightmost byte of a word.
Merge bytes from memory with contents of register rt and load result
into register rt.

Store Byte SB rt,offset(base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant byte of register rt at addressed location.

Store SH rt,offset(base)

Halfword Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant halfword of register rt at addressed location.

Store Word SW rt,offset(base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Store least significant word of register rt at addressed location.

Store Word SWL rt,offset(base)

Left Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt left so that leftmost byte of the word is in position
of addressed byte. Store bytes containing original data into corresponding
bytes at addressed byte.

Store Word SWR rt,offset(base)

Right Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt right so that leftmost byte of the word is in position
of addressed byte. Store bytes containing original data into corresponding
bytes at addressed byte.

Table 3.3 Load and Store Instruction Summary
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Computational Instructions

Computational instructions perform arithmetic, logical and shift operations on val-
ues in registers. They occur in both R-type (both operands are registers) and I-type
(one operand is a 16-bit immediate) formats. There are four categories of computa-

tional instructions:
°
°
°

ALU Immediate instructions are summarized in Table 3.4a.
3-Operand Register-Type instructions are summarized in Table 3.4b.
Shift instructions are summarized in Table 3.4c.

Multiply/Divide instructions are summarized in Table 3.4d.

Instruction

Format and Description

]

|l op | rs | it | immediate

ADD Immediate

ADDI rt,rs,immediate

Add 16-bit sign-extended immediate to register rs and place 32-bit
result in register rt. Trap on two's complement overflow.

ADD Immediate
Unsigned

ADDIU rt,rs,immediate
Add 16-bit sign-extended immediate to register rs and place 32-bit
result in register rt. Do not trap on overfiow.

Set on Less Than
Immediate

SLTI rt,rs,immediate

Compare 16-bit sign-extended immediate with register rs as signed
32-bit integers. Result = 1 if rs is less than immediate,; otherwise
result = 0. Place result in register rt.

Set on Less Than
Unsigned Immediate

SLTIU rt,rs,immediate

Compare 16-bit sign-extended immediate with register rs as unsigned
32-bit integers. Result = 1 if rs is less than immediate,; otherwise
result = 0. Place result in register rt.

AND Immediate

ANDI rt,rs,immediate

Zero-extend 16-bit immediate, AND with contents of register rs
and place result in register rt. -

OR Immediate

ORI rt,rs,immediate

Zero-extend 16-bit immediate, OR with contents of register rs
and place result in register rt.

XORI rt,rs,immediate

Exclusive OR , . ) .

Immediate Zero-extend 16-bit immediate, exclusive ORwith contents of register rs
and place result in register rt.

Load Upper LUI rt,immediate

Immediate

Shift 16-bit immediate left 16 bits. Set least significant 16 bits of

word to zeroes. Store result in register rt.

R2000 Architecture
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Instruction

Format and Description

[op I rs [t [ rd | ALUfnct |

Add

ADD rd,rs,rt

Add contents of registers rs and rt and place 32-bit result in
register rd. Trap on two’s complement overflow.

Add Unsigned

ADDU rd,rs,rt

Add contents of registers rs and rt and place 32-bit result in
register rd. Do not trap on overflow.

Subtract

SUB rd,rs,rt

Subtract contents of registers rt from rs and place 32-bit result in
register rd. Trap on two’'s complement overflow.

Subtract Unsigned

SUBU rd,rs,rt

Subtract contents of registers rt from rs and place 32-bit result in
register rd. Do not trap on overflow.

Set on Less Than

SLT rd,rs,rt

Compare contents of register rt to register rs (as signed 32-bit
integers). If register rs is less than rt, result = 1; otherwise, result = 0.

Set on Less Than

SLTU rd,rs,rt

Unsigned Compare contents of register rt to register rs (as unsigned 32-bit
integers). If register rs is less than rt, result = 1; otherwise, result = 0.
AND AND rd,rs,rt
Bitwise AND contents of registers rs and rt and place result in registerrd.
OR OR rd,rs,rt

Bitwise OR contents of registers rs and rt and place result in registerrd.

Exclusive OR

XOR rd,rs,rt

Bitwise exclusive OR contents of registers rs and rt and place result
in register rd.

NOR NOR rd,rs,rt
Bitwise NOR contents of registers rs and rt and place result in registerrd.
Table 3.4b 3-Operand Register-Type Instruction Summary
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Instruction | Format and Description
Shift Left SLL rd,rt,shamt
Logical Shift contents of register rt left by shamt bits, inserting zeroes into
low order bits. Place 32-bit result in register rd.
Shift Right SRL rd,rt,shamt
Logical Shift contents of register rt right by shamt bits, inserting zeroes into
high order bits. Place 32-bit result in register rd.
Shift Right SRA rd,rt,shamt
Arithmetic Shift contents of register rt right by shamt bits, sign-extending the
high order bits. Place 32-bit result in register rd.
Shif; Left SLLV rd,rt,rs
I\‘,‘;%':glle Shift contents of register rt left. Low-order 5 bits of register rs specify
number of bits to shift. Insert zeroes into low order bits of rt and
place 32-bit result in register rd.
Shift Right SRLV rd,rt,rs
{./og,lcgll Shift contents of register rt right. Low-order 5 bits of register rs specify
ariable number of bits to shift. Insert zeroes into high order bits of rt and
place 32-bit result in register rd.
Shift Right SRAV rd,rt,rs
Crauﬁgrgleetlc Shift contents of register rt right. Low-order 5 bits of register rs specify

number of bits to shift. Sign-extend the high order bits of rt and
place 32-bit result in register rd.

Table 3.4c Shift Instruction Summary
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Instruction

Format and Description

Multiply

MULT rs,rt

Multiply contents of registers rs and rt as twos complement values.
Place 64-bit result in special registers HI / LO.

Multiply Unsigned

MULTU rs,rt

Multiply contents of registers rs and rt as unsigned values.
Place 64-bit result in special registers HI / LO.

Divide

DIV rs,rt

Divide contents of register rs by rt treating operands as twos
complements values. Place 32-bit quotient in special register LO, and
32-bit remainder in HI.

Divide Unsigned

DIVU rs,rt

Divide contents of register rs by rt treating operands as unsigned
values. Place the 32-bit quotient in special register LO, and the
32-bit remainder in HI.

Move From Hi MFHI rd
Move contents of special register HI to register rd.
Move From LO MFLO rd
Move contents of special register LO to register rd.
Move To HI MTHI rd
Move contents of register rd to special register Hl.
Move To LO MTLO rd
Move contents of register rd to special register LO.
Table 3.4d Multiply/Divide Instruction Summary
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Jump and Branch Instructions

Jump and Branch instructions change the control flow of a program. All Jump and
Branch instructions occur with a one instruction delay: that is, the instruction imme-
diately following the jump or branch is always executed while the target instruction
is being fetched from storage. Refer to The Delayed Instruction Slot at the end of
this chapter for a detailed discussion of the delayed Dump and Branch instructions.

The J-type instruction format is used for both jumps and jump-and-links for sub-
routine calls. In this format, the 26-bit target address is shifted left two bits, and
combined with the high-order 4 bits of the current program counter to form-a 32-bit
absolute address.

The R-type instruction format which takes a 32-bit byte address contained in a
register is used for returns, dispatches, and cross-page jumps.

Branches have 16-bit offsets relative to the program counter (I-type). Jump-and-
Link and Branch-and-Link instructions save a return address in Register 31.

Table 3.5a summarizes the R2000 Jump instructions and Table 3.5b summarizes the
Branch instructions.

Instruction Format and Description

Jump J target
Shift 26-bit target address left two bits, combine with high-order 4 bits of PC
and jump to address with a one instruction delay.

Jump And Lind JAL target

Shift 26-bit target address left two bits, combine with high—order 4 bits of PC
and jump to address with a one instruction delay. Place address of instruction
following delay slot in r31 (link register).

Jump Register JRrs
Jump to address contained in register rs with a one instruction delay.

Jump And Link JALR rs, rd

Register Jump to address contained in register rs with a one instruction delay. Place
address of instruction following delay slot in rd.

Table 3.5a Jump Instruction Summary
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Instruction Format and Description

Branch Target: All Branch instruction target addresses are computed as
follows: Add address of instruction in delay slot and the
16-bit offset (shifted left two bits and sign-extended
to 32 bits). All branches occur with a delay of
one instruction.

Branch on Equal BEQ rs,rt,offset

Branch to target address if register rs = rt.
Branch on Not BNE rs,rt,offset
Equal Branch to target address if register rs 3 rt.

Branch on Less than | BLEZ rs,offset
or Equal Zero Branch to target address if register rs less than or = 0.

Branch on Greater BGTZ rs,offset

Than Zero Branch to target address if register rs greater than O.
Branch on Less BLTZ rs,offset
Than Zero

Branch to target address if register rs less than 0.

Branch on Greater BGEZ rs,offset
than or Equal Zero | Branch to target address if register rs greater than or = to 0.

Branch on Less BLTZAL rs,offset

Than Zero And Link| pjace address of instruction following delay slot in register r31 (link
register). Branch to target address if register rs less than 0.

Branch on Greater BGEZAL rs,offset

than or Equal Zero | place address of instruction following delay slot in register r31 (link
And Link register). Branch to target address if register rs is greater than or = to 0.

Table 3.5b Branch Instruction Summary

Special Instructions

The two Special instructions let software initiate traps. They are always R-type.
Table 3.6 summarizes the Special instructions.

Instruction Format and Description

System Call SYSCALL
Initiates system call trap, immediately transferring control to exception handler.

Breakpoint BREAK
Initiates breakpoint trap, immediately transferring control to exception handler.

Table 3.6 Special Instructions
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Coprocessor Instructions

Coprocessor instructions perform operations in the coprocessors.

Coprocessor

Loads and Stores are I-type. Coprocessor computational instructions have coproces-

sor-dependent formats (see coprocessor manuals).

Table 3.7 summarizes the

Coprocessor instructions.

Instruction

Format and Description

Load Word to
Coprocessor

LWCz rt,offset(base)

Sign-extend 16-bit offset and add to base to form address. Load
contents of addressed word into coprocessor register rt
of coprocessor unit z.

Store Word from

SWCz rt,offset(base)

Coprocessor Sign-extend 16-bit offset and add to base to form address. Store
contents of coprocessor register rt from coprocessor unit z at addressed
memory word.

Move To MTCz rt,rd

Coprocessor Move contents of CPU register rt into coprocessor register rd of
coprocessor unit z.

Move From MFCz rt,rd

Coprocessor

Move contents of coprocessor registerrd from coprocessor unit z to
CPU register rt.

Move Control To
Coprocessor

CTCz rt,rd

Move contents of CPU register rt into coprocessor control register rd
of coprocessor unit z.

Move Control From | CFCz rt,rd

Coprocessor Move contents of control register rd of coprocessor unit z into CPU
register rt.

Coprocessor COPz cofun

Operation . .
Coprocessor z performs an operation. The state of the R2000 is not
modified by a coprocessor operation.

Branch on BCzT offset

Coprocessor z
True

Compute a branch target address by adding address of instruction in the
16-bit offset (shifted left two bits and sign—-extended to 32 bits). Branch
to the target address (with a delay of one instruction) if coprocessor z's
condition line is true.

Branch on
Coprocessor z
False

BCzF offset

Compute a branch target address by adding address of instruction in the
16-bit offsét (shifted left two bits and sign-extended to 32 bits). Branch
to the target address (with a delay of one instruction) if coprocessor z's
condition line is false.

R2000 Architecture
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System Control Coprocessor (CP0) Instructions

Coprocessor 0 instructions perform operations on the System Control Coprocessor
(CP0) registers to manipulate the memory management and exception handling fa-

cilities of the processor.

Table 3.8 summarizes the instructions available to work

with CPO.
Instruction Format and Description
Move To CPO MTCO rt,rd
Load contents of CPU registerrt into register rd of CPO0.
Move From CP0| MFCO  rt,rd

Load contents of CPO register rd into CPU register rt.

Read Indexed
TLB Entry

TLBR
Load EntryHi and EntryLo registers with TLB entry pointed at by Index register.

Write Indexed
TLB Entry

TLBWI

Load TLB entry pointed at by/ndex register with contents of EntryHi and
EntryLo registers.

Write Random
TLB Entry

TLBWR

Load TLB entry pointed at by Random register with contents of EntryHi and
EntryLo registers.

Probe TLB for
Matching Entry

TLBP

Load Index register with address of TLB entry whose contents matchEntryHi and
EntryLo. If no TLB entry matches, set high—order bit of Index register.

Restore From RFE
Exception Restore previous interrupt mask and mode bits of Status register into current
status bits. Restore old status bits into previous status bits.
Table 3.8 System Control Coprocessor (CPO) Instruction Summary
3-12 R2000 Architecture




Instruction Summary

R2000 Instruction Pipeline

The execution of a single instruction consists of five primary steps or pipe stages:

1) IF—Instruction Fetch. Access the TLB and calculate the instruction
address required to read an instruction from the I-Cache. Note that
the instruction is not actually read into the processor until the begin-
ning (phase 1) of the RD pipe stage.

2) RD—Read any required operands from CPU registers (RF = Register
Fetch) while decoding the instruction.

3) ALU—Perform the required operation on instruction operands.

4) MEM-—Access memory (D-Cache) if required (for a Load or Store
instruction).

5) WB—Write back ALU results or value loaded from D-cache to reg-
ister file.

Each of these steps requires approximately one CPU cycle as shown in Figure 3.2
(parts of some operations lap over into another cycle while other operations require
only 1/2 cycle).

~ Instruction Execution |
| F_| RO | AU |MEM | wB
__|-Cache | RF| OP |D-CACHE| wB ]
TLB - [ SR TLB )

. onecwle

Figure 3.2 Instruction Execution Sequence
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To achieve an instruction execution rate approaching one instruction per CPU cycle,
a five—-instruction pipeline is utilized. Thus, five instructions at a time are executed
in an overlapped fashion as shown in Figure 3.3.

R2000 Instruction Pipeline
- (5-deep
“wi[_F | RD [ALU [ MEM

W ]

sl F [ RD JALU
<:‘ w3[ F | RD MEM | WB |
= w[F ALU | MEM | WB
.:Instruction o FEE I l .
Flow B 1#5 RD | ALU [MEM [WB |
Current
CPU
Cycle

Figure 3.3 R2000 Instruction Pipeline

The Delayed Instruction Slot

The R2000 uses a number of techniques internally to enable execution of all instruc-
tions in a single cycle; however, there are two categories of instructions whose spe-
cial requirements could disturb the smooth flow of instructions through the pipeline.

® Load instructions have a delay, or latency, of one cycle before the data
being loaded is available to another instruction.

® Jump and Branch instructions also have a delay of one cycle while
they fetch the instruction and the target address if the branch is taken.

One technique for dealing with the delay inherent with these instructions would be
to stall the flow of instructions through the pipeline whenever a load, jump, or
branch is executed. However, in addition to the negative impact that this technique
would have on instruction throughput, it would also complicate the pipeline logic,
exception processing, and system synchronization.

The technique used in the R2000 is to continue execution despite the delay. Loads,
jumps, and branches do not interrupt the normal flow of instructions through the
pipeline; the processor always executes the instruction immediately following one of these
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“delayed” instructions. Instead of having the processor deal with pipeline delays, the
R2000 turns over the responsibility for dealing with delayed instructions to software.
Thus, an assembler can insert an appropriate instruction immediately following a
delayed instruction and has the responsibility of ensuring that the inserted instruc-
tion will not be affected by the delay.

Delayed Loads

Figure 3.4 shows three instructions in the R2000 pipeline. Instruction 1 (I#1) is a
Load instruction. The data from the load is not available until the end of the I#1
MEM cycle - too late to be used by I#2 during its ALU cycle, but available to I#3 for
its ALU cycle. Therefore, software must ensure that I#2 does not depend on data
loaded by I#1. Usually, a compiler can reorganize instructions so that something
useful is executed during the delay slot or, if no other instruction is available, can
insert a NOP (no operation) instruction in the slot.

IF | RD | ALU | MEM | WB
1#1] -Cache | D OP D-CACHE |ws |
(Load) . - » \

1 112 ]| 1Cache [ D OP L ,
(delay e P Data
jsoy o+ 1l % Available

| 1#3[ Cache | D OP
__one cycle

Figure 3.4 The Load Instruction Delay Slot
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Delayed Jumps and Branches

Figure 3.5 also shows three instructions in the R2000 pipeline. Instruction 1 (I#1) in
this case is a Branch instruction. I#1 must calculate a branch target address, and
that address is not available until the beginning of the ALU cycle of I#1 — too late
for the I-Cache access of I#2 but available to I#3 for its I-Cache access. The
instruction in the delay slot (I#2) will always be executed before the branch or jump
actually occurs.

1F l RD ALU MEM WB
1#1| -Cache ID OP D-CACHE |wB |
(Branch) | IAddress~ :I\
| 1#2 [ =cache D OP
 {(delay i :
| slot) ¥y . -
' I#3] 1-Cache | ID OP
Address l '
Available
one cycle

Figure 3.5 The Jump/Branch Instruction Delay Slot

An assembler has several possibilities for utilizing the branch delay slot produc-
tively:

e It can insert aninstruction that logically precedes the branch instruc-
tion in the delay slot since the instruction immediately following the
jump/branch effectively belongs to the block preceding the transfer
instruction.

o It can replicate the instruction that is the target of the branch/jump
into the delay slot provided that no side-effects occur if the branch
falls through.

e It can move an instruction up from below the branch into the delay
slot, provided that no side-effects occur if the branch is taken.

e If no other instruction is available, it can insert a NOP instruction in
the delay slot.
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Memory Management System

The R2000 provides a full-featured memory management unit (MMU) utilizing an
on-chip Translation Lookaside Buffer (TLB) to provide very fast virtual memory
accesses. This chapter describes the operation of the TLB and the CPO registers that
provide the software interface to the TLB. The memory mapping scheme supported
by the R2000 to translate virtual addresses to physical addresses is also described in
detail.

Memory System Architecture

The R2000’s virtual memory system logically expands the CPU’s physical memory
space by translating addresses composed in a large virtual address space into the
physical memory space of the R2000.

Figure 4.1 shows the form of an R2000 virtual address. The most significant 20 bits
of a 32-bit virtual address are called the virtual page number, or VPN. The VPN
allows mapping of 4 Kbyte pages, while the least significant 12 bits (the offset
within a page) are passed along unchanged to form the physical address. The three
most significant bits of VPN (bits 31..29) further define how addresses are mapped
according to whether the R2000 is in user mode or kernel mode (these modes are
described in the paragraphs that follow).

Figure 4.1 Virtual Address Format

A 6-bit process identifier field is appended to each virtual address to form unique
virtual addresses for up to 64 processes. The mapping of these extended, process-
unique virtual addresses to physical addresses need not be one-to-one; virtual ad-
dresses of two or more different processes may map to the same physical address.
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Privilege States

The R2000 provides two privilege states: the Kernel mode, which is analogous to the
“supervisory” mode provided by many machines, and the User mode, where non-
supervisory programs are executed. The R2000 enters the Kernel mode whenever
an exception is detected and remains in the Kernel mode until a Restore From
Exception (rfe) instruction is executed.

Address mapping is different for Kernel and User modes. To simplify the manage-
ment of user state from within the Kernel, the user-mode address space is a subset
of the Kernel-mode address space. Figure 4.2 shows the virtual-to-physical mem-

ory map for both the User mode and Kernel mode segments.

2048 May:s;%
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Virtual

ffff fff ksegz

'&I(erneld
appe
Cacr?gable

c000 0000

Any >

bfff ftff kseg1

UnKrggne'ed
Uncagged

2000 0000

offf ffff ksego
Ui Kernel q
nmappe
Cacl?gd
8000 0000

71t ffff

User
Mapped
Cacheable

- {J 000 0000

Physical

feff ffff

Memory

2000 0000

5 3684 MBytes

1£ff ffff

Memory
0000 0000

512 MBytes

Figure 4.2 The R2000 Virtual Memory Map
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User-Mode Virtual Addressing

When the processor is operating in User mode, a single, uniform virtual address
space (kuseg) of 2 Gbytes is available for users. All valid User-mode virtual ad-
dresses have the most-significant bit cleared to 0. An attempt to reference an
address with the most-significant bit set while in the User mode causes an Address
Error exception. (See Chapter 5.)

The 2 Gbyte User segment starts at address zero. The TLB maps all references to
kuseg identically from Kernel and User modes and controls access cacheability.
(The N bit in a TLB entry determines whether the reference will be cached.)

Kuseg is typically used to hold user code and data, and the current user process
typically resides in kuseg.

Kernel-Mode Virtual Addressing

When the processor is operating in Kernel mode, three distinct virtual address
spaces (in addition to kuseg) are simultaneously available. The three segments
dedicated to the kernel are:

® kseg0. This cached, unmapped segment starts at virtual address
0x8000_0000 and is 512 Mbytes long.

® ksegl. This uncached, unmapped segment begins at virtual address
0xa000_0000 and is 512 Mbytes long.

® kseg2. This kernel-mapped, cacheable segment begins at virtual ad-
dress 0xc000_0000 and is 1 Gbytes long.

Kseg0. When the most-significant three bits of the virtual address are “100,” the
virtual address space selected is a 512-Mbyte kernel physical space (kseg0). The
R2000 direct-maps references within kseg0 onto the first 512 Mbytes of physical
address space. These references use cache memory, but they do not use TLB en-

tries. Thus, kseg0 is typically used for kernel executable code and some kernel
data.

Ksegl. When the most-significant three bits of the virtual address are “101,” the
virtual address space selected is a S12-Mbyte kernel physical space (ksegl). The
processor directly maps ksegl onto the first 512 Mbytes of physical space and uses
no TLB entries. Unlike kseg0, ksegl uses uncached references. An operating sys-
tem typically uses ksegl for I/O registers, ROM code, and disk buffers.
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Kseg2. When the most-significant two bits of the virtual address are “11,” the
virtual address space selected is a 1024 Mbyte kernel virtual space (kseg2). Like
kuseg, kseg2 uses TLB entries to map virtual addresses to arbitrary physical ones,
with or without caching. (The N bit in a TLB entry determines whether the refer-
ence will be cached.) An operating system typically uses kseg2 for stacks and per-
process data that it must remap on context switches, for user page tables (memory
map), and for some dynamically allocated data areas. Kseg2 allows selective cach-
ing and mapping on a per-page basis, rather than requiring an all or nothing ap-
proach.

Virtual Memory and the TLB

Mapped virtual addresses are translated into physical addresses using a Translation
Lookaside Buffer (TLB). The TLB is a fully associative memory device that holds
64 entries to provide mapping of 64 4Kbyte pages. When address mapping is indi-
cated (that is, when the access is in kuseg or kseg2), each TLB entry is simultane-
ously checked for a match with the extended virtual address.

The CPU supports up to four coprocessors. Coprocessor 0 (CP0), which is called
the System Control Coprocessor, is implemented as an integral part of the R2000.
CPO supports address translation, exception handling, and other “privileged” opera-
tions. It consists. of the 64-entry TLB plus the ten registers shown in Figure 4.3.
The sections that follow describe how each of the four TLB-related registers is used.
(Note: CPO functions and registers associated with exception handling are described
in Chapter 5.)
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CPO & the TLB

EntryHi
Register

EntrylLo
Register

Index
Register

Random
Register

©'Used with
‘Exception
Processing.
‘See Chapter 5
for details.:

("Safe” entries)
(See Random Register)

Figure 4.3 The CPU Registers & the TLB.

TLB Entries

Each TLB entry is 64 bits wide and its format is shown in Figure 4.4. Each of the
fields of a TLB entry has a corresponding field in the EntryHi/EntryLo register pair
described next. Refer to Figure 4.5 for a description of each of the TLB entry
fields.

Figure 4.4 Format of a TLB Entry
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EntryHi & EntryLo Registers

These two registers provide the data pathway through which the TLB is read, writ-
ten, or probed. When address translation exceptions occur, these registers are
loaded with relevant information about the address that caused the exception. The
format of the EntryHi and EntryLo register pair a is the same as the format of TLB
entry and is illustrated in Figure 4.5.

EntryLo is the natural form of a Page Table Entry (PTE); however, since PTEs are
always loaded by system software, not by the R2000 hardware, an operating system
can use another format for memory-resident PTEs.

TLB EntryHi Register

VPN
PID

Virtual Page Number. Bits 31..12 of virtual address.

Process ID field. A 6-bit field which lets multiple processes share the TLB
while each process has a distinct mapping of otherwise identical virtual page
numbers.

Reserved. Currently ignores writes, returns zero when read.

TLB EntryLo Register

Page Frame Number. Bits 31..12 of the physical address. The R2000
maps a virtual page to the PFN.

Non-cacheable. If this bit is set, the page is marked as non-cacheable
a':\d the R2000 directly accesses main memory instead of first accessing
the cache.

Dirty. If this bit is set, the page is marked as "dirty” and therefore

writable. This bit is actually a "write—-protect” bit that software can use to
prevent alteration of data. If an entry is accessed for a write operation when
the D bit is cleared, the R2000 causes a TLB Mod trap. The TLB entry is not
modified on such a trap.

Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise,

a TLBL or TLBS Miss occurs.

Global. If this bit it set, the R2000 ignores the PID match requirement for
valid translation. In kseg2, the Global bit lets the kernel access all mapped
data without requiring it to save or restore PID (Process ID) values.

Reserved. Currently ignores writes, returns zero when read.

Figure 4.5 The TLB EntryLo & EntryHi Registers
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Virtual Address Translation

During virtual-to-physical address translation, the R2000 compares the PID and the
highest 20 bits (the VPN) of the virtual address to the contents of the TLB. Figure
4.6 illustrates the TLB address translation process.

A virtual address matches a TLB entry when the virtual page number (VPN) field of
the virtual address equals the VPN field of the entry, and either the Global (G) bit of
the TLB entry is set, or the process identifier (PID) field of the virtual address (as
held in the EntryHi register) matches the PID field of the TLB entry. While the
Valid (V) bit of the entry must be set for a valid translation to take place, it is not
involved in the determination of a matching TLB entry.

If a TLB entry matches, the physical address and access control bits (N, D, and V)
are retrieved from the matching TLB entry. Otherwise, a TLB miss (or UTLB miss)
exception occurs. If the access control bits (D and V) indicate that the access is not
valid, a TLB modification or TLB miss exception occurs. If the N bit is set, the
physical address that is retrieved is used to access main memory, bypassing the
cache.
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Address Translation
Input Virtual Address

Address
Error

Exception

'

Exception

A&%?: s Access
emor Cache

Ouput Physical Address

Figure 4.6 TLB Address Translation
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The Index Register

The Index register is a 32-bit, read/write register, which has 6 bits that index an
entry in the TLB. The high-order bit of the register shows the success or failure of
a TLB Probe (tlbp) instruction (described later in this chapter).

The Index register also specifies the TLB entry that will be affected by the TLB
Read (tlbr) and TLB Write Index (tlbwi) instructions. Figure 4.7 shows the format
of the Index register.

Index Register

P Probe failure. Set to 1 when the last TLBProbe (tlbp) instruction was
unsuccessful.

Index  Index to the TLB entry that will be affected by the TLBRead and TLBWrite
instructions.

@ Reserved. Currently ignores writes, returns zero when read.

Figure 4.7 The Index Register
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The Random Register

The Random register is a 32-bit register. The format of the Random register is
shown in Figure 4.8. The six-bit Random field indexes a random entry in the TLB.
The R2000 decrements the Random field during every machine cycle but constrains
the value of this field to the TLB indexes from 63 to 8 (the counter wraps around
from 8 to 63, skipping values 7 through 0).

The TLB Write Random (tlbwr) instruction is used to write the TLB entry that this
register indexes. The first eight entries (0 to 7) are the “safe” entries because a
tlbwr instruction can never replace the contents of these entries. Typically, these
eight entries are reserved for use by the operating system.

Although normal operations never require it, the contents of this register can be
read to verify proper operation of the process. To further simplify testing, the
Random field is set to a value of 63 when the R2000 is reset.

Random A random index (with a value ranging from 8 to 63) to a TLB entry.

Reserved. Currently ignores writes, returns zero when read.

Figure 4.8 The Random Register
TLB Instructions

The instructions that the R2000 provides for working with the TLB are listed in
Table 4.1 and described briefly below.

- Gpcels [ Desempion.
tibp Translation Lookaside Buffer Probe
tlbr Translation Lookaside Buffer Read
tibwi Translation Lookaside Buffer Write Index
tlbwr Translation Lookaside Buffer Write Random

Table 4.1 TLB Instructions
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Translation Lookaside Buffer Probe (tlbp). This instruction probes the TLB to see
if an entry matches the EntryHi register contents. If a match exists, the R2000 loads
the Index register with the index of the entry that matches the EntryHi register.
When no match exists, the R2000 sets the high order bit (the P bit) of the Index
register.

Translation Lookaside Buffer Read (tlbr). This instruction loads the EntryHi and
EntryLo registers with the contents of the TLB entry specified by the contents of the
Index register.

Translation Lookaside Buffer Write Index (tlbwi). This instruction loads the speci-
fied TLB entry with the contents of the EntryHi and EntryLo registers. The contents
of the Index register specify the TLB entry.

Translation Lookaside Buffer Write Random (tlbwr). This instruction loads a
pseudo-randomly specified TLB entry with the contents of the EntryHi and EntryLo
registers. The contents of the Random register specify the TLB entry.
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Exception Processing

This chapter describes how the R2000 Processor handles exceptions and also de-
scribes the system control coprocessor (CP0) registers used during exception proc-
essing.

When the R2000 detects an exception, the normal sequence of instruction execution
is suspended; the processor exits User mode and is forced into Kernel mode where it
can respond to the abnormal or asynchronous event. All events that can initiate
exception processing are described in this chapter. Table 5.1 lists the exceptions
that the R2000 recognizes.

The R2000’s exception handling system efficiently handles machine exceptions,
including Translation Lookaside Buffer (TLB) misses, arithmetic overflows, I/O in-
terrupts, and system calls. All of these events interrupt the normal execution flow;
the R2000 aborts the instruction causing the exception and also aborts all those
following in the instruction pipeline which have already begun execution. The
R2000 then performs a direct jump into a designated exception handler routine.

When an exception occurs, the R2000 loads the EPC (Exception Program Counter)
with an appropriate restart location where execution may resume after the exception
has been serviced. The restart location in the EPC is the address of the instruction
which caused the exception or, if the instruction was executing in a branch delay
slot, the address of the branch instruction immediately preceding the delay slot.
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TLBS (store)

‘Exception_ Mnemonic | Cause

Reset Reset Assertion of the R2000’s Reset signal causes an
an exception that transfers control to the special
vector at virtual address 0xbfc00000.

UTLB miss UTLB User TLB miss. A reference is made (in either
User mode or Kernel mode) to a page inkuseg
that has no matching TLB entry.

TLB miss TLBL (load) | A referenced TLB entry’s Valid bit isn’t set or

there is a reference to a kseg2 page that has
no matching TLB entry.

TLB modified

Mod

During a store instruction, the Valid bit is set but
the Dirty bit is not set.

Bus error

IBE
(Instruction)
DBE (data)

Assertion of the R2000’s BERR* signal due to
such external events as bus timeout, backplane
bus parity errors, invalid physical addresses or
invalid access types.

Address Error

AdEL (load)
AdES (store)

Attempt to load, fetch, or store an unaligned word;
that is, a word or halfword at an address not
evenly divisible by 4 or 2 respectively. Also
caused by reference to a virtual address with most
significant bit set while in User mode.

Overflow Ovf Twos complement overflow during add or subtract.

System call Sys Execution of the syscall instruction.

Breakpoint Bp Execution of the break instruction.

Reserved RI Execution of aninstruction with an undefined or

Instruction reserved major operation code (bits 31..26), or
a special instruction whose minor opcode (bits 5..0)
is undefined.

Coprocessor CpU Execution of a coprocessor instruction when the

Unusable CU (Coprocessor Usable) bit is not set for. the
target coprocessor.

Interrupt Int Assertion of one of the R2000’s six hardware
interrupt inputs or setting of one of the two
software interrupt bits in the Cause register.

Table 5.1 R2000 Exceptions
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The Exception Handling Registers

The CPO registers shown in Figure 5.1 and listed below contain information that is
related to exception processing. Software can examine these registers during excep-
tion processing to determine such things as the cause of an exception, and the state
of the CPU at the time of an exception. Each of these registers is described in detail
in the paragraphs that follow.

® the Cause register

® the EPC (Exception Program Counter) register
® the Status register

® the BadVAddr (Bad Virtual Address) register
e the Context register

® the PRId (Processor Revision Identifier) register

~ CPO & Exception Handling Register

Status
Register

Cause
Register

63 Context
Register

EPC
Register

BadVAddr |
Register

PRId
Register

Used with
Virtual :
Memory (TLB)
See Chapter 4
- for details. :

Figure 5.1 The CPO Exception Handling Registers
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Two other registers, the Index register and the Random register, are used to imple-
ment the R2000 virtual memory management system and may also contain informa-
tion of interest when handling exceptions related to virtual memory errors. Refer to
Chapter 4 for a description of these two registers.

The Cause Register

This contents of this 32-bit register describe the last exception. A 4-bit exception
code (ExcCode) indicates the cause as listed in Table 5.2. The remaining fields
contain detailed information specific to certain exceptions. All bits in the register,
with the exception of the Sw bits, are read-only. The Sw bits can be written into to
set or reset software interrupts. The format for the Cause register is shown in Figure
5.2.

The Cause Register

BD  Branch Delay. Set to 1 if last exception was taken while
executing in a branch delay slot.

CE Coprocessor Error. Indicates the unit number referenced when a
Coprocessor Unusable Exception is taken.

IP Interrupts Pending. Indicates the external interrupts that are
pending. IP(S..0] = Interrupt[5..0]

Sw Software Interrupts. Indicates which of the two software
interrupts are pending. This field may be written into to set or
reset software interrupts.

ExcCode Exception Code field. Described in Table 5.2.

@ Reserved. Currently ignores writes, returns zero when read.

Figure 5.2 The Cause Register
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. The Cause Register ExcCode Field

Number | Mnemonic | Description
0 Int External interrupt
1 MOD TLB modification exception
2 TLBL TLB miss exception (Load or instruction fetch)
3 TLBS TLB miss exception (Store)
4 AdEL Address error exception (Load or instruction fetch)
5 AdES Address error exception (Store)
6 IBE Bus error exception (for an instruction fetch)
7 DBE Bus error exception (for a data load or store)
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved Instruction exception
11 CpU Coprocessor Unusable exception
12 Ovf Arithmetic overflow exception
13-15 — reserved

Table 5.2 The ExcCode Field

The EPC (Exception Program Counter) Register

The 32-bit, read-only EPC register contains the address where processing can re-
sume after an exception has been serviced.

This register contains the virtual address of the instruction that caused the excep-
tion. When that instruction resides in a branch delay slot, the EPC register contains
the virtual address of the immediately preceding Branch or Jump instruction. The
R2000 also sets the Cause register’s BD bit if the exception occurred in the branch
delay slot. The EPC register format is shown in Figure 5.3.

The EPC Register

Figure 5.3 The EPC Register
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The Status Register

This register contains all major status bits. Any exception puts the system in Kernel
mode. All bits in the Status register, with the exception of the TS (TLB Shutdown)
bit are readable and writeable; the TS bit is read-only. Figure 5.4 shows the format
of the Status register and summarizes the functions performed by each bit. Addi-
tional details on the function of each Status register bit are provided in the para-
graphs that follow.

__ The Status Register

agnostics and testing.

_primary use is for

CU  Coprocessor Usability. These bits control usability of the four possible
coprocessors: Cu3, Cu2, Cul, and Cu0. If a CU bit is set (=1), that coprocessor
is usable.

» BEV Bootstrap Exception Vector. If set to 1, causes the R2000 to use the alternate,
bootstrap vectors for UTLB Miss and general exceptions.

* TS TLB Shutdown. Set to 1 if R2000 has disabled TLB due to catastrophic error.
Cleared only by Reset.

* PE Parity Error. Set to 1 if cache parity error occurs. Reset by writing a 1 to this bit.

x CM Cache Miss. Set to 1 if most recent D-Cache load resulted in a miss (only when
the D-Cache is isolated).

|1 PZ Parity Zero. When set to 1, causes zero to replace normal outgoing parity bits.
* SwC Swap Caches. Controls switching of control signals for I-Cache and D-Cache.
* IsC Isolate Cache. When set to 1, isolates D-Cache from main memory system.

IntMask Interrupt Mask. When a bit is set to 1, the corresponding hardware interrupt
[Intr*5..0] or software interrupt [Sw1..0] is enabled.

KUo Kernel/User mode, old. Set to O if Kernel, 1 if User.

IEo Interrupt Enable, old. Set to 1 to enable, 0 to disable.

KUp Kernel/User mode, previous. Set to 0 if Kernel, 1 if User.
IEp  Interrupt Enable, previous. Set to 1 to enable, 0 to disable.
KUc Kernel/User mode, current. Set to 0 if Kernel, 1 if User.
1Ec Interrupt Enable, current. Set to 1 to enable, 0 to disable.

@ Reserved. Currently ignores writes, returns zero when read.

Figure 5.4 The Status Register
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CU (Coprocessor Usable) controls the usability of each of the possible four
coprocessors (Cu3..Cu0). Thus, software can control access of processes to the
coprocessors. If a bit is set to 1, the corresponding coprocessor is usable, if a bit is
cleared (0), the coprocessor is marked as unusable. All coprocessor instructions
require that the target coprocessor be marked usable or a Coprocessor Unusable
Exception (described later in this chapter) occurs. Note that the System Control
Coprocessor (CP0) is always considered usable when the R2000 is operating in Ker-
nel mode regardless of the setting of the Cu0 bit.

BEV (Bootstrap Exception Vectors) controls location of UTLB miss and general
exception vectors during bootstrap (immediately following reset). When this bit is
set to 0, the normal exception vectors are used; when the bit is set to 1, bootstrap
vector locations are used. This alternate set of vectors can be used when diagnostic
tests cause exceptions to occur prior to verifying proper operation of the cache and
main memory system. (Refer to Exception Description Details later in this chapter
for a description of the exception vectors.)

TS (TLB Shutdown). This read-only bit is intended for use by diagnostics and indi-
cates that the R2000 has shut down the TLB due to attempts to access several TLB
entries simultaneously. This mechanism protects the TLB from catastrophic hard-
ware failures in the event of software misuse of the TLB — specifically, when two or
more TLB entries have the same VPN (Virtual Page Number) and PID (Process ID).
When the TLB is in this state, all address translations and TLB probe access are
inhibited and have undefined effects. This state can be cleared only by asserting
Reset.

PE (Parity Error). This bit is set if a cache parity error has occurred. Since the
R2000 transparently recovers from parity errors (by taking a cache miss and access-
ing main memory) this bit is intended for diagnostic purposes. Software can use
this bit to log cache parity errors, and diagnostics can use it to verify proper func-
tioning of the cache parity bits and cache parity trees. To clear this bit, write a one
to PE; writing a zero to this bit does not affect its value.

CM (Cache Miss). This bit is set if the most recent D-Cache load resulted in a
cache miss and is intended for use by diagnostic programs to verify the proper
functioning of the cache tag and parity bits.. This bit setting only takes effect when
in the “isolated cache” mode. See the IsC bit.

PZ (Parity Zero). If this bit is set, outgoing parity bits (for both cache data and
tags) for store instructions are set to zero

SwC (Swap Caches). This bit controls swapping of the control signals for the data
cache (D-Cache) and instruction cache (I-Cache). (0 means normal; 1 means
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switched.) Cache swapping can be used to implement cache flushing mechanisms
and to perform cache testing and diagnostics.

IsC (Isolate Cache). Setting this bit isolates the D-Cache from the main memory
system. (0 means normal; 1 means D-Cache isolated.) Cache isolation can be used
to implement cache flushing mechanisms and to perform cache testing and diagnos-
tics.

IntMask (Interrupt Mask). These bits allows individual enabling/disabling of each
of the eight interrupt classes —- six hardware interrupts and two software interrupts.
A 0 in a bit position disables that interrupt and a 1 enables the interrupt. All
interrupts can be disabled by clearing the Interrupt Enable bit(s) /Eo/IEp/IEc de-
scribed below.

KUo/KUp/KUc (Kernel/User mode: Old/Previous/Current). These three bits com-
prise a 3-level stack showing the old/previous/current mode (0 means Kernel; 1
means User). Manipulation and use of these bits during exception processing is
described in the section that follows.

IEo/IEp/IEc (Interrupt Enable: Old/Previous/Current). These three bits comprise a
3-level stack showing the old/previous/current interrupt enable settings (0 means
disable; 1 means enable). Manipulation and use of these bits during exception
processing is described in the section that follows.
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Status Register Mode Bits and Exception Processing

When the R2000 responds to an exception it saves the current Kernel/User mode
(KUc) and current interrupt enable mode (IEc) bits of the Status register into the
previous mode bits (KUp and IEp). The previous mode bits (KUp and IEp) are saved
into the old mode bits (KUo and IEo). The current mode bits (KUc and IEc) are
cleared to cause the processor to enter the Kernel operating mode and turn off
interrupts.

This three-level set of mode bits lets the R2000 respond to two levels of exceptions
before software must save the contents of the Status register. Figure 5.5 shows how
the R2000 manipulates the Status register during exception recognition.

.. Exception
’ rec,ognitio,n %

Figure 5.5 The Status Register and Exception Recognition

After an exception handler has completed execution, the R2000 must return to the
system context that existed prior to the exception (if possible). The Restore From
Exception (rfe) instruction provides the mechanism for this return.

The Restore From Exception (rfe) instruction restores control to a process that an
exception pre-empted. When the rfe instruction is executed, it restores the “previ-
ous” interrupt mask (IEp) bit and Kernel/User mode (KUp) bit in the Status register
into the the corresponding “current” status bits (IEc and KUc). It also restores the
“old” status bits (IEo and KUo) into the corresponding previous status bits (IEp and
KUp). The old status bits (IEo and KUo) remain unchanged. The actions of the rfe
instruction are illustrated in Figure 5.6.
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Figure 5.6 Restoring from Exceptions

BadVAddr Register

The BadVAddr register saves the entire bad virtual address for any addressing excep-
tion: AdEL or AdES. Figure 5.7 illustrates the organization of the register.

NOTE: This register does not save any information for bus errors since these are
not addressing errors.

BadVAddr Register

Bad Virtual Address

Figure 5.7 The BadVAddr Register

Context Register

The Context register duplicates some of the information provided in the BadVAddr
register, but provides the information in a form that may be more useful for a
software TLB exception handler. It is designed for use in a UTLB miss handler,
which loads TLB entries for normal user-mode references.

The Context register can be used to hold a pointer into the Page Table Entry (PTE).
An operating system sets the PTE base field in the register, as needed. Normally,
an operating system uses the Context register to address the current user process’s
page map, which resides in the kernel-mapped segment kseg2. Note that the use of
this register is solely for the convenience of the operating system.

For all addressing exceptions (except bus errors), this register holds the Virtual
Page Number (VPN) from the most recent virtual address for which the translation
was invalid. Figure 5.8 shows the format of the Context register.
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PTEBase

PTEBase Holds the base for the Page Table Entry (set
by software).

BadVPN Holds the failing Virtual Page Number (set
by hardware). This field is read-only and
contains bits 30..12 (user-segment VPN) of the |
BadVAddr register.

E@:] Unused; ignored on writes, zero when read.

Figure 5.8 The Context Register
Processor Revision Identifier Register
This 32-bit read-only register contains information that identifies the implementa-

tion and revision level of the Processor and System Control Coprocessor. The for-
mat of the register is shown in Figure 5.9.

' PRId Register

Imp Implementation identifier.
Rev Revision identifier.
m Reserved. Currently ignores writes, returns zero when read.

Figure 5.9 The Processor Revision Identifier Register
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Exception Description Details

This part of Chapter 5 describes each exception—its cause, handling, and servicing.
NOTE: You cannot mask machine exceptions.

Exception Vector Locations

The R2000 uses three different addresses for exception vectors:
e The RESET exception vector is at address 0xbfc00000.
e The UTLB Miss exception vector is at address 0x8000000.

e The General exception vector which is used for all other types of ex-
ceptions is at address 0x80000080.

NOTE: If the BEV (Bootstrap Exception Vector) bit in the Status Register is set to 1,
the UTLB Miss vector address is changed to 0xbfc00100 and the General exception
vector is changed to 0xbfc00180.
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Address Error Exception

Cause. This exception occurs when an attempt is made to load, fetch, or store a
word that is not aligned on a word boundary. Attempts to load or store a half-word
that is not aligned on a half-word boundary also cause this exception. The excep-
tion also occurs in User mode if a reference is made to a virtual address whose most
significant bit is set—a kernel address. This exception is not maskable.

Handling. The R2000 branches to the General Exception vector (0x80000080) for
this exception. When the exception occurs, the R2000 sets the ADEL or ADES code
in the Cause register’s ExcCode field to indicate whether the address error occurred
during an instruction fetch or a load operation (ADEL) or a store operation (ADES).

The EPC register points at the instruction that caused the exception, unless the
instruction is in a branch delay slot: in that case, the EPC register points at the
branch instruction that preceded the exception-causing instruction and sets the BD
bit of the Cause register.

The R2000 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUo,
IEo, KUp, and IEp bits, respectively and clears the KUc and IEc bits.

When this exception occurs, the BadVAddr register contains the virtual address that
was not properly aligned or that improperly addressed kernel data while in User
mode. The contents of the VPN field of the Context and EntryHi registers are unde-
fined.

Servicing. A kernel should hand the executing process a segmentation violation
signal. Such an error is usually fatal although an alignment error might be handled
by simulating the instruction that caused the error.
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Breakpoint Exception

Cause. This exception occurs when the R2000 executes the BREAK instruction.
This exception is not maskable.

Handling. The R2000 branches to the General Exception vector (0x80000080) for
this exception and sets the BP code in the Cause register’s ExcCode field.

The R2000 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUo,
IEo, KUp, and IEp bits, respectively, and clears the KUc and /Ec bits.

The EPC register points at the BREAK instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points at the
branch instruction that preceded the BREAK instruction and sets the BD bit of the
Cause register.

Servicing. Transfer control to the applicable system routine. Unused bits of the
BREAK instruction (bits 25..6) can be used to pass additional information. To
examine these bits, load the contents of the instruction pointed at by the EPC regis-
ter. NOTE: If the instruction resides in the branch delay slot, add four to the
contents of the EPC register to find the instruction.

To resume execution, change the EPC register so that the R2000 does not execute
the BREAK instruction again. To do this, add four to the EPC register before
returning. NOTE: If a BREAK instruction is in the branch delay slot, the branch
instruction must be interpreted in order to resume execution.
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Bus Error Exception

Cause. This exception occurs when the BERR* input to the CPU is asserted by
external logic. For example, events like bus time-outs, backplane bus parity errors,
and invalid physical memory addresses or access types can signal this exception.
This exception is not maskable.

This exception is used for synchronously occurring events such as cache miss refills,
uncached references, and unbuffered writes. The general interrupt mechanism must
be used to report a bus error that results from asynchronous events such as a buff-
ered write transaction.

Handling. The R2000 branches to the General Exception vector (0x80000080) for
this exception. When the exception occurs, the R2000 sets the IBE or DBE code in
the Cause register’s ExcCode field to indicate whether the error occurred during an
instruction fetch reference (IBE) or during a data load or store reference (DBE).

The EPC register points at the instruction that caused the exception, unless the
instruction is in a branch delay slot: in that case, the EPC register points at the
branch instruction that preceded the exception-causing instruction and sets the BD
bit of the Cause register.

The R2000 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUo,
IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing. The physical address where the fault occurred can be computed from the
information in the CP0 registers:

® If the Cause register’'s IBE code is set (showing an instruction fetch
reference), the virtual address resides in the EPC register.

o If the Cause register’s DBE exception code is set (specifying a load or
store reference), the instruction that caused the exception is at the vir-
tual address contained in the EPC register (if the BD bit of the Cause
register is set, add four to the contents of the EPC register). Interpret
the instruction pointed to by EPC to get the virtual address of the load
or store reference and then use the TLBProbe (tlbp) instruction and
read EntryLo to compute the physical page number.

A kernel should hand the executing process a bus error when this exception occurs.
Such an error is usually fatal.
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Coprocessor Unusable Exception

Cause. This exception occurs due to an attempt to execute a COprocessor instruc-
tion when the corresponding coprocessor unit has not been marked usable (the ap-
propriate CU bit in the Status register has not been set). For CPO0 instructions, this
exception occurs when the unit has not been marked usable and the process is
executing in User mode: CP0 is always usable from Kernel mode regardless of the
setting of the Cu0 bit in the Status register. This exception is not maskable.

Handling. The R2000 branches to the General Exception vector (0x80000080) for
this exception. It sets the CpU code in the Cause register’s ExcCode field. Only one
coprocessor can fail at a time.

The contents of the Cause register’s CE (Coprocessor Error) field show which of the
four coprocessors (3, 2, 1, or 0) the R2000 referenced when the exception occurred.

The EPC register points at the coprocessor instruction that caused the exception,
unless the instruction is in a branch delay slot: in that case, the EPC register points
at the branch instruction that preceded the coprocessor instruction and sets the BD
bit of the Cause register.

The R2000 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUo,
IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing. To identify the coprocessor unit that was referenced, examine the con-
tents of the Cause register’s CE field. If the process is entitled to access, mark the
coprocessor usable and restore the corresponding user state to the coprocessor.

If the process is entitled to access to the coprocessor, but the coprocessor is known
not to exist or to have failed, the system could interpret the coprocessor instruction.
If the BD bit is set in the Cause register, the branch instruction must be interpreted;
then, the coprocessor instruction could be emulated with the EPC register advanced
past the coprocessor instruction.

If the process is not entitled to access to the coprocessor, the process executing at
b4 ) PN a1
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Such an error is usually fatal.
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Interrupt Exception

Cause. This exception occurs when one of eight interrupt conditions (software gen-
erates two, hardware generates six) occurs.

Each of the eight external interrupts can be individually masked by clearing the
corresponding bit in the IntMask field of the Status register. All eight of the inter-
rupts can be masked at once by clearing the /Ec bit in the Status register.

Handling. The R2000 branches to the General Exception vector (0x80000080) for
this exception. The R2000 sets the Int code in the Cause register’s ExcCode field.

The IP field in the Cause register show which of six external interrupts are pending,
and the SW field in the Cause register shows which of two software interrupts are
pending. More than one interrupt can be pending at a time.

The R2000 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUo,
IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing. If software generates the interrupt, clear the interrupt condition by set-
ting the corresponding Cause register bit (SWI:0) to zero.

If external hardware generates the interrupt, clear the interrupt condition by alleviat-
ing conditions that assert the interrupt signal (INTR*5:0).
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Overflow Exception

Cause. This exception occurs when an ADD ADDI, SUB, or SUBI instruction re-
sults in two’s complement overflow. This exception is not maskable.

Handling. The R2000 branches to the General Exception vector (0x80000080) for
this exception. The R2000 sets the OV code of the Cause register.

The EPC register points at the instruction that caused the exception, unless the
instruction is in a branch delay slot: in that case, the EPC register points at the
branch instruction that preceded the exception-causing instruction and sets the BD
bit of the Cause register.

The R2000 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUbo,
IEo, KUp, and [IEp bits, respectively, and clears the KUc and /Ec bits.

Servicing. A kernel should hand the executing process a floating point exception or
integer overflow error when this exception occurs. Such an error is usually fatal.
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Reserved Instruction Exception

Cause. This exception occurs when the R2000 executes an instruction whose major
opcode (bits 31..26) is undefined or a SPECIAL instruction whose minor opcode
(bits 5..0) is undefined.

This exception provides a way to interpret instructions that might be added to or
removed from the MIPS processor architecture.

Handling. The R2000 branches to the General Exception vector (0x80000080) for
this exception. It sets the R/ code of the Cause register’s ExcCode field.

The EPC register points at the reserved instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points at the
branch instruction that preceded the reserved instruction and sets the BD bit of the
Cause register.

The R2000 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUo,
IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing. If instruction interpretation is not implemented, the kernel should hand
the executing process an illegal instruction/reserved operand fault signal. Such an
error is usually fatal.

An operating system can interpret the undefined instruction and pass control to a
routine that implements the instruction in software. If the undefined instruction is in
the branch delay slot, the routine that implements the instruction is responsible for
simulating the branch instruction after the undefined instruction has been “exe-
cuted”. Simulation of the branch instruction includes determining if the conditions
of the branch were met and transferring control to the branch target address (if
required) or to the instruction following the delay slot if the branch is not taken. If
the branch is not taken, the next instruction’s address is = [EPC] + 8. If the branch
is taken, the branch target address is calculated as shown below:

+8 —» next instruction
+4 —= delay slot
[EPC}— branch | offset

Target address = ([EPC] + 4) + (offset*4)

Note that the target address is relative to the address of the instruction in the delay
slot, not the address of the branch instruction. Refer to the descriptions of branch
instruction for details on how branch target addresses are calculated.
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Reset Exception

Cause. This exception occurs when the R2000’s RESET signal is asserted and then
de-asserted. '

Handling. The R2000 provides a special interrupt vector (0xbfc00000) for this
exception. The Reset vector resides in the R2000’s unmapped and uncached ad-
dress space; therefore the hardware need not initialize the Translation Lookaside
Buffer (TLB) or the cache to handle this exception. The processor can fetch and
execute instructions while the caches and virtual memory are in an undefined state.

The contents of all registers in the R2000 are undefined when this exception occurs
except for the following:

® The TS, SWc, KUc, and IEc bits of the Status register are cleared to
Zero.

® The BEV bit of the Status register is set to one.
® The Random register is initialized to 63.

Servicing. The Reset exception is serviced by initializing all processor registers,
coprocessor registers, the caches, and the memory system. Typically, diagnostics
would then be executed and the operating system bootstrapped. The Reset excep-
tion vector is selected to appear within the uncached, unmapped memory space of
the machine so that instructions can be fetched and executed while the cache and
virtual memory system are still in an undefined state.
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System Call Exception

Cause. This exception occurs when the R2000 executes a SYSCALL instruction.

Handling. The R2000 branches to the General Exception vector (0x80000080) for
this exception and sets the Sys code in the Cause register’s ExcCode field.

The EPC register points at the SYSCALL instruction that caused the exception, un-
less the SYSCALL instruction is in a branch delay slot: in that case, the EPC register
points at the branch instruction that preceded the SYSCALL instruction and the BD
bit of the Cause register is set.

The R2000 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUo
IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing. The operating system transfers control to the applicable system routine.
To resume execution, alter the EPC register so that the SYSCALL instruction does
not execute again. To do this, add four to the EPC register before returning.
NOTE: If a SYSCALL instruction is in a branch delay slot, the branch instruction
must be interpreted in order to resume execution.

R2000 Architecture 5-21



Chapter 5

TLB Miss Exceptions
There are three different types of TLB misses than can occur:

e If the input Virtual Page Number (VPN) does not match the VPN of any TLB
entry, or if the Process Identifier (PID) in EntryHi does not match the TLB en-
try’s PID (and the Global bit is not set), a miss occurs. For kuseg, a UTLB Miss
occurs. For kseg2, a TLB Miss occurs.

e If everything matches, but the Valid bit of the matching TLB entry is not set, a
TLB Miss occurs.

e If the dirty bit in a matching TLB entry is not set and the access is a write, a TLB
MOD exception occurs.

Figure 5.10 (a simplified version of TLB address translation figure used in Chapter
4) illustrates how the three different kinds of TLB miss exceptions are generated.
Each of the exceptions is described in detail in the pages that follow.

Input Virtual Address

VPN
&
PD /.

Exception . Ouput Physi'cal Address Exception

Figure 5.10 TLB Miss Exceptions
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TLB Miss Exception

Cause. This exception occurs when a Kernel mode virtual address reference to
memory is not mapped, when a User mode virtual address reference to memory
matches an invalid TLB entry, or when a Kernel mode reference to user memory
space matches an invalid TLB entry.

Handling. The R2000 branches to the General Exception vector (0x80000080) for
this exception. When the exception occurs, the R2000 sets the TLBL or TLBS code
in the Cause register’s ExcCode field to indicate whether the miss was due to an
instruction fetch or a load operation (TLBL) or a store operation (TLBS).

The EPC register points at the instruction that caused the exception, unless the
instruction is in a branch delay slot: in that case, the EPC register points at the
branch instruction that preceded the exception-causing instruction and sets the BD
bit of the Cause register.

The R2000 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUo,
IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

When this exception occurs, the BadVAddr, Context, and EntryHi registers contain
the virtual address that failed address translation. The PID field of EntryHi remains
unchanged by this exception. The Random register normally specifies the pseudo-
random location where the R2000 can put a replacement TLB entry.

Servicing. The failing virtual address or virtual page number identifies the corre-
sponding PTE. The operating system should load EntryLo with the appropriate PTE
that contains the physical page frame and access control bits and also write the
contents of EntryLo and EntryHi into the TLB.
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Servicing Multiple (nested) TLB Misses. Within a UTLB Miss handler, the virtual
address that specifies the PTE contains physical address and access control informa-
tion that might not be mapped in the TLB. Then, a TLB Miss exception occurs.
You can recognize this case by noting that the EPC register points within the UTLB
Miss handler. The operating system might interpret the event as an address error
(when the virtual address falls outside the valid region for the process) or as a TLB
Miss on the page mapping table.

This second TLB miss obscures the contents of the BadVAddr, Context, and EntryHi
registers as they were within the UTLB Miss handler. As a result, the exact virtual
address whose translation caused the first fault is not known unless the UTLB Miss
handler specifically saved this address. You can only observe the failing PTE virtual
address. The BadVAddr register now contains the original contents of the Context
register within the UTLB Miss handler, which is the PTE address for the original
faulting address.

If the operating system interprets the exception as a TLB Miss on the page mapping
table, it constructs a TLB entry to map the page table and writes the entry into the
TLB. Then, the operating system can determine the original faulting virtual page
number, but not the complete address. The operating system uses this information
to fetch the PTE that contains the physical address and access control information.
It also writes this information into the TLB.

The UTLB Miss handler must save the EPC in a way that allows the second miss to
find it. The EPC register information that the UTLB Miss handler saved gives the
correct address at which to resume execution. The “old” KUo and IEo bits of the
Status register contain the correct mode after the R2000 services a double miss.
NOTE: You neither need-nor want to return to the the UTLB Miss handler at this
point.
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TLB Modified Exception

Cause. This exception occurs when a store operation’s virtual address reference to
memory matches a TLB entry that is marked valid, but not marked dirty. This
exception is not maskable.

Handling. The R2000 branches to the General Exception vector (0x80000080) for
this exception and sets the MOD exception code in the Cause register’s ExcCode
field.

When this exception occurs, the BadVAddr, Context, and EntryHi registers contain
the virtual address that failed address translation. EntryHi also contains the PID
from which the translation fault occurred.

The EPC register points at the instruction that caused the exception, unless the
instruction is in a branch delay slot: in that case, the EPC register points at the
branch instruction that preceded the exception-causing instruction and sets the BD
bit of the Cause register.

The R2000 saves the KUp, IEp, KUc,and IEc bits of the Status register in the KUo,
IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing. A kernel should use the failing virtual address or virtual page number to
identify the corresponding access control information. The identified page might or
might not permit write accesses. (Typically, software maintains the “real” write
protection in unused hardware bits.) If the page does not permit write access, a
“Write Protection Violation” occurs.

If the page does permit write accesses, the kernel should mark the page frame as
dirty in its own data structures. Use the TLBProbe (tlbp) instruction to put the
index of the TLB entry that must be altered in the Index register. Then load the
EntryLo register with a word that contains the physical page frame and access con-
trol bits (with the data bit D set). Finally, use the TLBWrite Indexed (tlbwi) in-
struction to write EntryHi and EntryLo into the TLB.
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UTLB Miss Exception

Cause. This exception occurs from Use. or Kernel mode references to user memory
space when no TLB entry matches both the VPN and the PID. Invalid entries cause
a TLB Miss rather than a UTLB Miss. This exception is not maskable.

Handling. The R2000 uses the special ULTB Miss interrupt vector (0x80000000)
for this exception. When the exception occurs, the R2000 sets the TLBL or TLBS
code in the Cause register’s ExcCode field to indicate whether the miss was due to an
instruction fetch or a load operation (TLBL) or a store operation (TLBS).

The EPC register points at the instruction that caused the exception, unless the
instruction is in a branch delay slot: in that case, the EPC register points at the
branch instruction that preceded the exception-causing instruction and sets the BD
bit of the Cause register.

The R2000 saves the KUp, IEp, KUc, and IEc bits of the Status register in the KUo,
IEo, KUp, and IEp bits, respectively, and clears the KUc and /Ec bits.

The virtual address that failed translation is held in the BadVAddr, Context, and
EntryHi registers The EntryHi register also contains the PID (Process Identifier)
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psuedo-random location in which to put a replacement TLB entry.

Servicing. The contents of the Context register can be used as the virtual address of
the memory word that contains the physical page frame and the access control
bits—a Page Table Entry (PTE)--for the failing reference. An operating system
should put the memory word in EntryLo and write the contents of EntryHi and
EntryLo into the TLB by using a TLB Write Random (tlbwr) assembly instruction.

The PTE virtual address might be on a page that is not resident in the TLB. There-
fore, before an operating system can reference the PTE virtual address, it should
save the EPC register’s contents in a general register reserved for kernel use or in a
physical memory location. If the reference is not mapped in the TLB, a TLB Miss
exception would occur within the UTLB Miss handler.
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6
R2010 FPA Overview

The R2010 Floating-Point Accelerator (FPA) operates as a coprocessor for the
R2000 Processor and extends the R2000’s instruction set to perform arithmetic op-
erations on values in floating-point representations. The R2010 FPA, with associ-
ated system software, fully conforms to the requirements of ANSI/IEEE Standard
754-1985, “IEEE Standard for Binary Floating—Point Arithmetic.” In addition, the
MIPS architecture fully supports the standard’s recommendations. Figure 6.1 illus-
trates the functional organization of the FPA.

ngge Data Bus v | i
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instructions ‘ — opevrands .
: Register unit (16 X 64)
o exponent part fraction :
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A B result] result :
Control | Exponent |— Add umt '
S Uglt unit : round
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A B result
Divide unit g
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Multiply unit B result

Figure 6.1 R2010 FPA Functional Block Diagram
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R2010 FPA Features

e Full 64-bit Operation. The R2010 contains sixteen, 64-bit registers
that can each be used to hold single-precision or double-precision
values. The FPA also includes a 32-bit status/control register that
provides access to all IEEE-Standard exception handling capabilities.

® Load/Store Instruction Set. Like the R2000 Processor, the R2010
uses a load/store-oriented instruction set, with single-cycle loads and
stores. Floating—point operations are started in a single cycle and
their execution is overlapped with other fixed point or floating-point
operations.

o Tightly-coupled Coprocessor Interface - the FPA connects to the
R2000 Processor to form a tightly-coupled unit with a seamless inte-
gration of floating-point and fixed-point instruction sets. Since each
unit-receives and executes instructions in parallel, some floating—point
instructions can execute at the same single-cycle per instruction rate
as fixed point-instructions.

R2010 FPA Programming Model

This section describes the organization of data in registers and in memory and the
set of general registers available. This section also gives a summary description of
all the R2010 FPA registers.

The R2010 FPA provides three types of registers as shown in Figure 6.2:

e Floating-Point General-Purpose Registers (FGR)
e Floating-Point Registers (FPR)
o Floating-Point Control Registers (FCR)
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Fzgure 6.2 R20I 0 FPA Regtsters

Floating—Point General-Purpose Registers (FGR) are directly addressable, physical
registers. The FPA provides thirty-two 32-bit FGRs.

Floating-Point Registers (FPR) are logical registers used to store data values during
floating-point operations. Each of the 16 FPRs is 64 bits wide and is formed by
concatenating two adjacent FGRs. Depending on the requirements of an operation,
FPRs hold either single- or double-precision floating-point values.

Floating-Point Control Registers are used for rounding mode control, exception han-
dling, and state saving. The FCRs include the Control/Status register and the Imple-
mentation/Revision register.

Floating-Point General Registers

The 32 Floating-Point General Registers (FGRs) on the FPA are directly address-
able 32-bit registers used in floating-point operations and individually accessible via
move, load, and store instructions. The FGRs are listed in Table 6.1, and the Float-
ing Point Registers (FPRs) that are logically formed by the general registers are
described in the section that follow.
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Table 6.1 Floating—Point General Registers

G RQR
i Number. | o0 1Usage !
0 FPR 0 (least)
1 FPR 0 (most)
2 FPR 2 (least)
3 FPR 2 (most)
) °
e e
. °
28 FPR 28 (least)
29 FPR 28 (most)
30 FPR 30 (least)
31 FPR 30 (most)

Floating-Point Régisters

The R2010 provides 16 Floating-Point Registers (FPR). These logical 64-bit regis-
ters hold floating-point values during floating-point operations and are physically
formed from the General-Purpose Registers (FGR).

The FPRs hold values in either single- or double-precision floating—point format.
Only even numbers are used to address FPRs: odd FPR register numbers are invalid.
During single—precision floating-point operations, only the even-numbered (least)
general registers are used, and during double-precision floating-point operations,
the general registers are accessed in double pairs. Thus, in a double-precision
operation, selecting Floating-Point Register 0 (FPR0) addresses adjacent Floating—
Point General-Purpose Registers FGRO and FGR1.

Floating-Point Control Registers

MIPS coprocessors can have as many as 32 control registers. The FPA coprocessor
implements two Floating-Point Control Registers (FCRs). These registers can be
accessed only by Move operations and contain the following:

& The Control/Status register (FCR31), is used to C‘O“uu] and monitor
exceptions, hold result of compare operations, and establish rounding
modes; and

® The Implementation/Revision register (FCR0), holds revision information
about the FPA.
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Control/Status Register (Read and Write)

The Control/Status register, FCR31, contains control and status data and can be
accessed by instructions running in either Kernel or User mode. It controls the
arithmetic rounding mode and the enabling of exceptions. It also indicates excep-
tions that occurred in the most recently executed instruction, and all exceptions that
have occurred since the register was cleared. Figure 6.3 shows the bit assignments.

_ The Control/Status Register
; E t TrapEnable | Sticky Bit:

C Condition bit. Set/cleared to reflect result of Compare instruction
and drives the FPA’s CpCond output signal.

Exceptions These bits are set to indicate any exceptions that occurred during
the most recent instruction.

: TrapEnable Trap Enables. These bits enable assertion of the CplInt* signal if the
corresponding Exception bit is set during a floating—point operation.

Sticky bits These bits are set if an exception occurs and are reset only by ;;

explicitly loading new settings into this register (with a Move instruction) .

RM Rounding Mode. These two bits specify which of the four rounding
modes is to be used by the FPA.

@ Reserved. Currently ignores writes, undefined when read.

Figure 6.3 Control/Status Register Bit Assignments
When the Control/Status register is read using a Move Control From Coprocessor I
(CFC1) instruction, all unfinished instructions in the pipeline are completed before
the contents of the register are moved to the main processor. If a floating—point

exception occurs as the pipeline empties, the exception is taken and the CFC1 in-
struction can be re-executed after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing to the register
using a Move Control To Coprocessor 1 (CTC1) instruction. This register must only
be written to when the FPA is not actively executing floating-point operations: this
can be assured by first reading the contents of the register to empty the pipeline.
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Control/Status Register Condition Bit

Bit 23 of the Control/Status register is the Condition bit. When a floating-point
Compare operation takes place, the detected condition is placed at bit 23, so that the
state of the condition line may be saved or restored. The “C” bit is set (1) if the
condition is true and cleared (0) if the condition is false. Bit 23 is affected only by
Compare and Move Control To FPA instructions.

Control/Status Register Exception Bits

Bits 17:12 in the Control/Status register contains Exception bits as shown in Figure
6.4 that reflect the results of the most recently executed instruction. These bits are
appropriately set or cleared after each floating—point operation. Exception bits are
set for instructions that cause one of the five IEEE standard exceptions or the
Unimplemented Operation exception.

Figure 6.4 Control/Status Register Exception/Sticky/TrapEnable Bits

If two exceptions occur together in one instruction, both of the appropriate bits in
the exception bit field will be set. When an exception occurs, both the correspond-
ing Exception and Sticky bits are set. Refer to Chapter 8, Floating Point Exceptions,
for a complete description of floating—point exceptions.

The Unimplemented Operation exception is not one of the standard IEEE-defined
floating-point exceptions. It is provided to permit software implementation of IEEE
standard operations and exceptions that are not fully supported by the FPA. Note
that trapping on this exception cannot be disabled: there is no TrapEnable bit for E.
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Control/Status Register Sticky Bits

The Sticky bits shown in Figure 6.4 hold the accumulated or accrued exception bits
required by the IEEE standard for trap disabled operation. These bits are set when-
ever an FPA operation result causes one of the corresponding Exception bits to be
set. However, unlike the Exception bits, the Sticky bits are never cleared as a side-
effect of floating-point operations; they can be cleared only by writing a new value
into the Control/Status register, using the Move Control To Coprocessor 1 (CTC1)
instruction.

Control/Status Register TrapEnable Bits

The TrapEnable bits shown in Figure 6.4 are used to enable a user trap when an
exception occurs during a floating-point operation. If the TrapEnable bit corre-
sponding to the exception is set it causes assertion of the FPA’s CpInt* signal. The
R2000 responds to the CpInt* signal by taking an interrupt exception which can then
be used to implement trap handling of the FPA exception.

Control/Status Register Rounding Mode Control Bits

Bits 1 and 0 in the Control/Status register comprise the Rounding Mode (RM) field.
These bits specify the rounding mode that the FPA will use for all floating—point
operations as shown in Table 6.2.

Bits:[MRemomc) :
00 RN Rounds result to nearest representable value; round to
value with least significant bit zero when the two
nearest representable values are equally near.

01 RZ Rounds result toward zero; round to value closest to
and not greater in magmtude than the infinitely
precise result.

10 RP Rounds toward +oo; round to value closest to
and not less than the infinitely precise result.

‘ Roundmg vModeDescnptnon

11 RM Rounds toward —oo; round to value closest to
and not greater than the infinitely precise resulit.

Table 6.2 Rounding Mode Bit Decoding

R2000 Architecture 6-7



Chapter 6

Implementation and Revision Register (Read Only)

The FPA control register zero (FCRO) contains values that define the implementa-
tion and revision number of the R2010 FPA. This information can be used to
determine the coprocessor revision and performance level and can also used by
diagnostic software. NOTE: This register is intended to assist users in identifying
version-specific characteristics of the FPA. However, due to the variety of levels at
which design changes may be implemented to the silicon, the revision information
cannot be guaranteed with every revision of the device nor assured to follow a com-
pletely predictable numerical sequence. MIPS has complete discretion over defining
these characteristics of the FPA.

Only the low-order bytes of the implementation and revision register are defined.
Bits 15 through 8 identify the implementation and bits 7 through 0 identify the
revision number as shown in Figure 6.5.

Implementation/Revision Register

Imp Implémentétion: 0x10 = R2010
Rev Revision of FPA
o | Unused; ignored on writes, zero when read.

Figure 6.5 Implementation/Revision Register

Floating—Point Formats

The R2010 FPA performs both 32-bit (single-precision) and 64-bit (double-preci-
sion) IEEE standard floating-point operations. The 32-bit format has a 24-bit
signed-magnitude fraction field and an 8-bit exponent, as shown in Figure 6.6.

1.3 an»p 0
S e f

Sign Exponent Fraction

1+ 8 . o3

Figure 6.6 Single-Precision Floating—Point Format
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The 64-bit format has a 53-bit signed-magnitude fraction field and an 11-bit expo-
nent, as shown in Figure 6.7.

S e f
Sign Exponent Fraction
... g2

Figure 6.7 Double-Precision Floating-Point Format

Numbers in the single-precision and double-precision floating—point formats (ex-
tended and quad formats are not supported by R2010 FPA) are composed of three
fields:

® A 1-bit sign: s,
® A biased exponent: e = E + bias, and
® A fraction: f=.b1ba...bp—1

The range of the unbiased exponent E includes every integer between two values
Emin and Emax inclusive, and also two other reserved values: Emin — 1 to encode
*+ 0 and denormalized numbers, and Emax+ 1to encode + « and NaNs (Not a
Number). For single- and double-precision formats, each representable non-zero
numerical value has just one encoding.

For single- and double-precision formats, the value of a number, v, is determined
by the equations shown in Table 6.3.

Table 6.3 Equations for Calculating Values in Floating-Point Format
(€)) if E=E__ +1and f # 0, then v is NAN, regardless of s.

(2) | if E=E__ +1and f= 0, then v =(-1)° oo .

N
@ | ifE, <E< E__, then v=(-1) 2E(1.f).

min

E
@ | it E<E_, -1and 50, thenv=(-1) 2 ™ (0.f).

X S
(5) | if E=E_,, -1 and f= 0, then v = (-1) 0.

For all floating-point formats, if v is NaN, the most significant bit of f determines
whether the value is a signaling or quiet NaN. v is a signaling NaN if the most
significant bit of f is set; otherwise v is a quiet NaN.
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Table 6.4 defines the values for the format parameters in the preceding description.

Table 6.4 Floating-Point Format Parameter Values

 Parameter | Single | Double

P 24 53

max +127 +1023

min -126 -1022

exponent bias +127 +1023
exponent width in bits 8 11

integer bit hidden hidden
fraction width in bits 23 52
format width in bits 32 64

Number Definitions

This subsection contains a definition of the following number types specified in the
IEEE 754 standard:

Normalized Numbers

Denormalized Numbers

Infinity

Zero

For more information, refer to the ANSI/IEEE Std 754-1985 IEEE Standard for Bi-
nary Floating—Point Arithmetic.

Normalized Numbers

Most floating—point calculations are performed on normalized numbers. For single-
precision operations, normalized numbers have a biased exponent that ranges from
1 to 254 (-126 to +127 unbiased) and a normalized fraction field, meaning that the
leftmost, or hidden, bit is one. In decimal notation, this allows representation of a
range of positive and negative numbers from approximately 1038 to 10-38, with accu-
racy to 7 decimal places.
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Denormalized Numbers

Denormalized numbers have a zero exponent and a denormalized (hidden bit equal
to zero) non-zero fraction field.

Infinity

Infinity has an exponent of all ones and a fraction field equal to zero. Both positive
and negative infinity are supported.

Zero

Zero has an exponent of zero, a hidden bit equal to zero, and a value of zero in the
fraction field. Both +0 and -0 are supported.

Coprocessor Operation

The FPA continually monitors the R2000 Processor instruction stream. If an instruc-
tion does not apply to the coprocessor, it is ignored; if an instruction does apply to
the coprocessor, the FPA executes that instruction and transfers necessary result
and exception data synchronously to the R2000 main processor.

The FPA performs three types of operations:

® IToads and Stores;
® Moves;

® Two- and three-register floating-point operations.

Load, Store, and Move Operations

Load, Store, and Move operations move data between memory or the R2000 Proces-
sor registers and the R2010 FPA registers. These operations perform no format
conversions and cause no floating—point exceptions. Load, Store, and Move opera-

tions reference a single 32-bit word of either the Floating-Point General Registers
(FGR) or the Floating-Point Control Registers (FCR).
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Floating-Point Operations

The FPA supports the following single- and double-precision format floating-point
operations:

Add

Subtract

Multiply

Divide

Absolute Value

Move

Negate
e Compare

In addition, the FPA supports conversions between single- and double-precision
floating—point formats and fixed-point formats. Refer to Chapter 7 for a complete
description of all the FPA instructions.

Exceptions

The R2010 FPA supports all five IEEE standard exceptions:

Invalid Operation
Inexact Operation
Division by Zero
Overflow
Underflow

The FPA also supports the optional, Unimplemented Operation exception that al-
lows unimplemented instructions to trap to software emulation routines. For more
information on exceptions, refer to Chapter 8. Floating Point Exceptions.
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R2010 FPA Overview

All R2010 instructions are 32 bits long and they can be divided into the following

groups:

® Load/Store and Move instructions move data between memory, the
main processor and the FPA general registers.

® Computational instructions perform arithmetic operations on floating
point values in the FPA registers.

® Conversion instructions perform conversion operations between the
various data formats.

e Compare instructions perform comparisons of the contents of regis-

ters and set a condition bit based on the results.

Table 6.5 lists the instruction set of the R2010 FPA. A more detailed summary is
contained in Chapter 7 and a complete description of each instruction is provided in

Appendix B.
oP Description oP Description
Load/Store/Move Instructions Computational Instructions

LWC1 Load Word to FPA ADD.fmt Floating-point Add

SWC1 Store Word from FPA SUB.fmt Floating—point Subtract
MTC1 Move word To FPA MUL.fmt | Floating—point Multiply

MFC1 Move word From FPA DIV.fmt Floating-point Divide

CTC1 Move Control word To FPA ABS.fmt Floating—point Absolute value
CFC1 Move Control word From FPA MOV.fmt | Floating—point Move

NEG.fmt | Floating-point Negate
CVL.S.fmt gor:yerSIQt: Igstru::tlog; o Fp Compare Instructions
.S.fm oating-point Convert to Single . .

CVT.D.fmt |Floating-point Convert to Double FP || C-cond.fmt| Floating-point Compare
CVT.W.fmt |Floating-point Convert to fixed-point

Table 6.5 R2010 ]nstruciion Summary
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R2010 Pipeline Architecture

The R2010 FPA provides an instruction pipeline that parallels that of the R2000
Processor. The FPA, however, has a 6-stage pipeline instead of the 5-stage pipeline
of the R2000: the additional FPA pipe stage is used to provide efficient coordination
of exception responses between the FPA and main processor.

The execution of a single R2010 instruction consists of six primary steps:

1) IF—Instruction Fetch. The main processor calculates the instruction
address required to read an instruction from the I-Cache. No ac-
tion is required of the FPA during this pipe stage since the main
processor is responsible for address generation.

2) RD-—The instruction is present on the data bus during phase 1 of
this pipe stage, and the FPA decodes the data on the bus to deter-
mine if it is an instruction for the FPA.

3) ALU-If the instruction is an FPA instruction, instruction execution
commences during this pipe stage.

4) MEM-If this is a coprocessor load or store instruction, the FPA
presents or captures the data during phase 2 of this pipe stage.

5) WB—The FPA uses this pipe stage solely to deal with exceptions.

6) FWB—The FPA uses this stage to write back ALU results to its reg-
ister file. This stage is the equivalent of the WB stage in the R2000
main processor.

Each of these steps requires approximately one FPA cycle as shown in Figure 6.8
(parts of some operations spill over into another cycle while other operations require
only 1/2 cycle).
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| ~ Instruction Execution
F | RD | ALU | MEM | WB | FWB
[I-Cache | RF oP D—Cache exceptions FpWB

one cycle

Figure 6.8 Instruction Execution Sequence

The R2010 uses a 6-stage pipeline to achieve an instruction execution rate ap-
proaching one instruction per FPA cycle. Thus, execution of six instructions at a
time are overlapped as shown in Figure 6.9.

{ u; ] RD l ALU] MEM] wbtbai

~ [F[ roJAwu]mem FwB|

[F ] ro [ ALU| MeN wB ]FWB]
S - [F[rmo ALU MEM] WB | FWB]
Instructlon [ —
‘Flow T RD ALU [ MEM] WB]FWB]

IF | RD | ALU[MEM] WB |FWB]

Current :
Cycle

Fzgure 6.9 R2010 Instruction Pzpelme

This pipeline operates efficiently because different FPA resources (address and data
bus accesses, ALU operations, register accesses, and so on) are utilized on a non-

interfering basis. Refer to Chapter 7 for a detailed discussion of the instruction
pipeline.
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FPA Instruction Set Summary
& Instruction Pipeline

This chapter provides an summary of the R2010 FPA’s instruction set and also
includes a detailed discussion of the FPA’s instruction pipeline that permits overlap-
ping of instructions to increase the effective instruction execution rate.

Instruction Set Summary

The floating point instructions supported by the R2010 FPA are all implemented
using the coprocessor unit 1 (COP1) operation instructions of the R2000 Processor
instruction set. The basic operations performed by the FPA are:

® Load and store operations from/to the FPA registers

Moves between FPA and CPU registers

o Computational operations including floating—point add, subtract, mul-
tiply, divide, and convert instructions

® Floating point comparisons

NOTE: The branch on coprocessor 1 condition (BC1T/BC1F) operations are also
COP1 operations and are described in this chapter: however, these instructions are
actually implemented entirely by the R2000 Processor using the CpCond input from
the FPA.

Load, Store, and Move Instructions

All movement of data between the R2010 FPA and memory is accomplished by load
word to coprocessor 1 (LWC1) and store word to coprocessor 1 (SWC1) instructions
which reference a single 32-bit word of the FPA’s general registers. These loads
and stores are unformatted; no format conversions are performed and therefore no
floating—point exceptions occur due to these operations.

Data may also be directly moved between the FPA and the R2000 Processor by move
to coprocessor 1 (MTC1) and move from coprocessor I (MFC1) instructions. Like the
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floating—point load and store operations, these operations perform no format conver-
sions and never cause floating—point exceptions.

The load and move to operations have a latency of one instruction. That is, the data
being loaded from memory or the CPU into an FPA register is not available to the
instruction that immediately follows the load instruction: the data is available to the
second instruction after the load instruction. (Refer to R2010 Instruction Pipeline
at the end of this chapter for a detailed discussion of load instruction latency.)

Table 7.1 summarizes the R2010 Load, Store and Move instructions.

Instruction | Pormat and Description.
Load Word LWC1 ft,offset(base)
to FPA

Sign-extend 16-bit offset and add to contents of CPU register base to form
(coprocessor 1) address. Load contents of addressed word into FPA general register ft.

Store Word SWCT1 ft,offset(base)

Erc%rgrgg:ssor 1) Sign-extend 16-bit offset and add to contents of CPU register base to form

address. Store 32-bit contents of FPA general register ft at addressed location.

Move Word MTC1 rtfs

Ego’;F;écessor 1y| Move contents of CPU register rt into FPA register fs.
Move Word MFC1 rt,fs

from FPA

(coprocessor 1) Move contents of FPA general register fs into CPU register rt.

Move Control CTC1 rtfs
Wor? to FPAr 1 Move contents of CPU register rt into FPA control register fs.
J(coprocesso

Move Control CFC1 rt,fs

Word from FPA . . .
(coprocessor 1) Move contents of FPA control register fs into CPU register rt.

Table 7.1 R2010 FPA Load, Store and Move Instruction Summary
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Floating Point Computational Instructions

Computational instructions perform arithmetic operations on floating-point values

in registers. There are four categories of computational instructions summarized in
Table 7.2:

e 3-Operand Register-Type instructions that perform floating point ad-
dition, subtraction, multiplication, and division operations

® 2-Operand Register-Type instructions that perform floating point ab-
solute value, move, and negate operations

e Convert instructions that perform conversions between the various
data formats

® Compare instructions that perform comparisons of the contents of two
registers and set or clear a condition signal based on the result of the
comparison.

In the instruction formats shown in Table 7.2, the fmt term appended to the instruc-
tion op code is the data format specifier: s specifies Single-precision binary float-
ing-point, d specifies Double—precision binary floating-point, and w specifies binary
fixed-point. For example, an ADD.d specifies that the operands for the addition
operation are double-precision binary floating-point values. NOTE: when fmt is

single-precision or binary fixed point, the odd register of the destination is unde-
fined.
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‘Instruction

Format and Description

Floating-point Add

ADD.fmt  fd,fs,ft

Interpret contents of FPA registers fs and ft in specified format (fmt)
and add arithmetically. Place rounded result in FPA register fd.

Floating-point
Subtract

SUB.fmt fd,fs,ft

Interpret contents of FPA registers fs and ft in specified format (fmt)
and arithmetically subtract ft from fs. Place result in FPA register fd.

Floating-point
Multiply

MUL.fmt  fd,fs,ft

Interpret contents of FPA registers fs and ft in specified format (fmt)
and arithmetically multiply ft and fs. Place result in FPA register fd.

Floating-point
Divide

DIV.fmt fd,fs,ft

Interpret contents of FPA registers fs and ft in specified format (fmt)
and arithmetically divide fs by ft. Place rounded result in register fd.

Floating—point
Absolute Value

ABS.fmt fd,fs

Interpret contents of FPA register fs in specified format (fmt)
and take arithmetic absolute value. Place result in FPA registerfd.

Floating—point
Move

MOV.fmt  fd,fs

Interpret contents of FPA register fs in specified format (fmt)
and copy into FPA register fd.

Floating—point
Negate

NEG.fmt  fd,fs

Interpret contents of FPA register fs in specified format (fmt)
and take arithmetic negation. Place result in FPA register fd.

Floating—point
Convert to Single
FP Format

CVT.S.fmt  fd,fs

Interpret contents of FPA register fs in specified format (fmt) and
arithmetically convert to the singlebinary floating point format. Place
rounded result in FPA register fd.

Floating-point
Convert to Double
FP Format

CVT.D.fmt  fd,fs

Interpret contents of FPA register fs in specified format (fmt) and
arithmetically convert to the double binary floating point format. Place
rounded result in FPA register fd.

Floating-point
Convert to Single
Fixed-Point Format

CVT.W.fmt  fd,fs
Interpret contents of FPA register fs in specified format (fmt) and

arithmetically convert to the single fixed—point format. Place result in
FPA register fd.

Floating-point
Compare

C.cond.fmt fs,ft

Interpret contents of FPA registers fs and ft in specified format (fmt)
and arithmetically compare. The result is determined by the
comparison and the specified condition (cond). After a one instruction
delay, the condition is available for testing by the R2000 with the branch
on floating-point coprocessor condition (BC1T,BC1F) instructions.

Table 7.2 R2010 FPA Computational Instruction Summary
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Floating Point Relational Operations

The Floating—point Compare (C.fmt.cond) instructions interpret the contents of two
FPA registers (f5, ft) in the specified format (fmt) and arithmetically compares them.
A result is determined based on the comparison and conditions (cond) specified in
the instruction. Table 7.3 lists the conditions that can be specified for the Compare
instruction and Table 7.4 summarizes the floating-point relational operations that
are performed.

Mnemonic| Definition Mnemonid  Definition
F False T True
UN Unordered OR Ordered
EQ Equal NEQ Not Equal
UEQ Unordered or Equal OLG Ordered or Less than or Greater than
OLT Ordered Less Than UGE Unordered or Greater than or Equal
ULT Unordered or Less Than OGE | Ordered Greater Than
OLE Ordered Less than or Equal UGT Unordered or Greater Than
ULE Unordered or Less than or Equal OGT | Ordered Greater Than
SF Signaling False ST Signaling True
NGLE | Not Greater than or GLE Greater than, or Less than or Equal
Less than or Equal
SEQ Signaling Equal SNE Signaling Not Equal
NGL Not Greater than or Less than GL Greater Than or Less Than
LT Less Than NLT Not Less Than
NGE Not Greater than or Equal GE Greater Than or Equal
LE Less than or Equal NLE Not Less Than or Equal
NGT Not Greater Than GT Greater Than

Table 7.3 Relational Mnemonic Definitions

Table 7.4 is derived from the similar table in the IEEE floating point standard and
describes the 26 predicates named in the standard. The table includes six addi-
tional predicates (for a total of 32) to round out the set of possible predicates based
on the conditions tested by a comparison. Four mutually exclusive relations are
possible: less than, equal, greater than, and unordered. Note that invalid operation
exceptions occur only when comparisons include the less than (<) or greater than (>)
characters but not the unordered (?) character in the ad hoc form of the predicate.
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PREDICATES RELATIONS Invalid:

: G 3 = gperation -
Condition reater ess n- xception i
Mnemonic ad hoc FORTRAN Than Than Equal_» ordered| Unor_%ere’d

F false F F F F no
UN ? F F F T no
EQ = .EQ. F F T F no
UEQ 7= .UE. F F T T no
OLT NOT(?>=) NOT. .UG F T F F no
ULT < .UL. F T F T no
OLE NOT(?>) .| .NOT. .UG F T T F no
ULE <= .ULE. F T T T no

OGT NOT(?<=) | .NOT. .ULE. T F F F no
UGT 7> .UGT. T F F T no
OGE NOT(?<) .NOT. .UL. T F T F no
UGE >= .UGE. T F T T no
OLG NOT(?=) T T F F no
NEQ NOT(=) .NE. T T F T no
OR NOT(?) T T T F no

T true T T T T no

SF F F F F yes
NGLE NOT(<=>) | .NOT. .LEG. F F F T yes
SEQ F F T F yes
NGL NOT(<>) .NOT. .LG. F F T T yes

LT < .LT. F T F F yes
NGE NOT(>=) .NOT. .GE. F T F T ves
LE <= .LE. F T T F yes
NGT NOT(>) .NOT. .GT. | F T T T yes
GT > .GT. T F F F yes

NLE NOT(<=) .NOT. .LE. T F F T yes
GE >= .GE. T F T F yes
NLT NOT(<) .NOT. .LT. T F T T yes
GL < .LG. T T F F yes
SNE T T F T yes
GLE => .LEG. T T T F yes
ST T T T T yes
Table 7.4 Floating Point Relational Operators
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Branch on FPA Condition Instructions

Table 7.5 summarizes the two branch on FPA (coprocessor unit 1) condition instruc-
tions that can be used to test the result of the FPA Compare (C.cond) instructions.
In this table, the phrase delay slot refers to the instruction immediately following the
branch instruction. Refer to the R2000 Processor User’s Guide for a discussion of the
branch delay slot.

Instruction | - Format and Description

Branch on | BCIT
FPA True Compute a branch tar?et address by adding address of instruction in the delay
slot and the 16-bit offset (shifted left two bits and sign-extended to 32 bits).

Branch to the target address (with a delay of one instruction) if the FPA's
CpCond signal is true.

Branch on | BC1F

FPA False | compute a branch tar?et address by adding address of instruction in the delay

slot and the 16-bit offset (shifted left two bits and sign-extended to 32 bits).
Branch to the target address (with a delay of one instruction) if the FPA’s
CpCond signal is false.

Table 7.5 Branch on FPA Condition Instructions
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The Instruction Pipeline

The R2010 FPA provides an instruction pipeline that parallels that of the R2000
Processor. The FPA, however, has a 6-stage pipeline instead of the 5-stage pipeline
of the R2000: the additional FPA pipe stage is used to provide efficient coordination
of exception responses between the FPA and main processor. Figure 7.1 illustrates

the six stages of the FPA instruction pipeline.

Instruction Execution

F | RD AlU | MEM | WB FWB
[1-Cache | RF oP D-Cache| exceptions| FPWB

\-.——V—;'
one cycle

Figure 7.1 R2010 FPA Instruction Execution Sequence

The six stages of the FPA instruction pipeline are used as follows:

7-8

1)

2)

3)

IF—Instruction Fetch. The CPU calculates the instruction address
required to read an instruction from the I-Cache. The instruction
address is generated and output during phase 2 of this pipe stage.
No action is required of the FPA during this pipe stage since the
main processor is responsible for address generation. Note that the
instruction is not actually read into the processor until the beginning
(phase 1) of the RD pipe stage.

RD—The instruction is present on data bus during phase 1 of this

pipe stage and the FPA decodes the data on the bus to determine if
it is an instruction for the FPA. The FPA reads any required oper-
ands from its registers (RF = Register Fetch) while decoding the in-

QEeriatiae
St uctiivil.

ALU-If the instruction is one for the FPA, execution commences
during this pipe stage. If the instruction causes an exception, the
FPA notifies the R2000 main processor of the exception during this
pipe stage by asserting the FpInt* signal. If the FPA determines
that it requires additional time to complete this instruction, it initi-
ates a stall during this pipe stage.
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4) MEM-If this is a coprocessor load or store instruction, the FPA
presents or captures the data during phase 2 of this pipe stage. If
an interrupt is taken by the main processor, it notifies the FPA dur-
ing phase 2 of this pipe stage (via the Exception* signal).

5) WB-—If the instruction that is currently in the write back (WB) stage
caused an exception, the main processor notifies the FPA by assert-
ing the Exception* signal during this pipe stage. Thus, the FPA
uses this pipe stage solely to deal with exceptions.

6) FWB—The FPA uses this stage to write back ALU results to its reg-
ister file. This stage is the equivalent of the WB stage in the R2000
main processor.

Figure 7.2 illustrates how the six instructions would be overlapped in the FPA pipe-
line. '

[ F [ rp | ALU] MEM] WB | FwB
T ro T Ao wew e . s
O | F| ro]ALU MEM ws [Fws]
Instruction | L] ro Mew] ws lFWBI': o
Flow [F ALU| MEM[ wB [FwB]
' ’ | rp | ALU[MEM] WB | FwB]

Current
CPU
Cycle

Figure 7.2 R2010 FPA Instruction Pipeline

This figure presumes that each instruction can be completed in a single cycle. Most
FPA instructions, however, require more than one cycle to execute. Therefore, the
FPA must stall the pipeline if an instruction’s execution cannot proceed because of

register or resource conflicts. Figure 7.3 illustrates the effect of a three-cycle stall
on the FPA pipeline.
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11| F ] o] ALU] MEM] WB Fwa |
12| F | RD | ALU| MEM ABVI‘staA\II [ stall | stail [ Fws]

<:' 1#3[_IF |_RD | ALU| MEM] stall | stall | stall | WB | FWB]

wi[ F| RO | ALU] alu alu_| MEM] WB | FWB]
Instruction -

Flow 15[ | rD [ stall [stall | stall | ALU] MEM] WB [ FwB |

1#6 |_IF | stall | stall | stall | RD | ALU| MEM] WB | FWB]

:Stall initiated by instruction
L #4 during its ALU: pipe stage.:

Figure 7.3 An FPA Pipeline Stall

To mitigate the performance impact that would result from frequently stalling the
instruction pipeline, the FPA allows overlapping of instructions so that instruction
execution can proceed so long as there are no resource conflicts, data dependencies,
or exception conditions. The sections that follow describe and illustrate the timing
and overlapping of FPA instructions.

Instruction Execution Times

Unlike the R2000 Processor which executes almost all instructions in a single cycle,
the time required to execute FPA instructions ranges from one cycle to 19 cycles.
Figure 7.4 illustrates the number of cycles required to execute each of the FPA
instructions.

In Figure 7.4, the cycles of an instruction’s execution time that are darkly shaded i
require exclusive access to an FPA resource (such as buses or ALU) that precludes
the concurrent use by another instruction and therefore prohibits overlapping execu-
tion of another FPA instruction. (Note that load and store operations can be over-
lapped with these cycles.) Those instruction cycles that are lightly shaded3, how-
ever, are placing minimal demands on the FPA resources, and other instructions can
be overlapped (with some restrictions) to obtain simuitaneous execution of instruc-
tions without stalling the instruction pipeline.

For example, an instruction such as DIV.D that requires a large number of cycles to
complete could begin execution, and another instruction such as ADD.D could be
initiated and completed while the DIV.D instruction is still being executed. Note
that only one multiply instruction can be running at a time and only one divide
instruction can run at a time.
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Figure 7.4 FPA Instruction Execution Times
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Overlapping FPA Instructions

Figure 7.5 illustrates the overlapping of several FPA (and non-FPA) instructions. In
this figure, the first instruction (DIV.S) requires a total of 12 cycles for execution
but only the first cycle and last three cycles preclude the simultaneous execution of
other FPA instructions. Similarly, the second instruction (MUL.S) has 2 cycles in
the middle of its total of 4 required cycles that can be used to advance the execution
of the third (ADD.S) and fourth instructions shown in the figure.

Cycles
0 t2 3 4 5 6.7 8 9 10 11 12
(I#1)  DIV.S
(1#2) MUL:.S &
(1#3) ADD S |

(1#4) SWC1
(1#5) non FPA[Z]
(1#6)  MUL.S

(I#7) MOV.S

(1#8) ABS.S
- (I#9)SWC1
(I#10)LWC1
(A#11)SWC1 -

(1#12) non FPA

Figure 7.5 Overlapping FPA Instructions

Note that although processing of a single instruction consists of six pipe stages, the
FPA does not require that an instruction actually be completed within six cycles to
avoid stalling the instruction pipeline. If a subsequent instruction does not require
FPA resources being used by a preceding instruction and has no data dependencies
on preceding uncompleted instructions, then execution continues.
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#1[ IF | RD | ALU| MEM| WB
#2[ F ] RD | ALUJMEM
1#3] IF | rRD | ALU| MEM| WB [FwB

#4 [ F | RD [ ALU| MEM| wB [FwWB
1#5| IF | RD | ALU|MEM] WB [FWB
6 [ IF | RD | ALU|MEM[ wB [FwB
» #7] F | RD | ALU| MEM] WB [ FWB
Instruction | w8 [ _F | RD | ALU|MEM[ WB | FWB
Flow: .. | w9 _F | RD | ALU|MEM| WB | FWB

mul.s
(I#3)  add.s
(1#4)
(I#5) non FPAE 77
(1#6)  mul.s #

: (I#7) mov.s [

(I#8):: abs.s

S(1#9): swel

a#10) lwel o
(I#11) non FPA
(I#12) non FPA

(1#2)

swcl

Figure 7.6 Overlapped Instructions in the FPA Pipeline

Figure 7.6 illustrates the progression of the FPA instruction pipeline with some over-
lapped FPA instructions. The first instruction (DIV.S) in this figure requires eight
additional cycles beyond its FWB pipe stage before it is completed. The pipeline
need not be stalled, however, because the way in which the FPA instructions are
overlapped avoids resource conflicts.

Figure 7.6 also presumes that there are no data dependencies between the instruc-
tions that would stall the pipeline. For example, if any instruction before I#13

required the results of the DIV.S (I#1) instruction, then the pipeline would be stalled
until those results were available.
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8
Floating Point Exceptions

This chapter describes how the R2010 FPA handles floating point exceptions. A
floating point exception occurs whenever the FPA cannot handle the operands or
results of a floating point operation in the normal way. The FPA responds either by
generating an interrupt to initiate a software trap or by setting a status flag. The
Control/Status register described in Chapter 6 contains a trap enable bit for each
exception type that determines whether an exception will cause the FPA to initiate a
trap or just set a status flag. If a trap is taken, the FPA remains in the state found at
the beginning of the operation, and a software exception handling routine is exe-
cuted. If no trap is taken, an appropriate value is written into the FPA destination
register and execution continues.

The FPA supports the five IEEE exceptions —- inexact (I), overflow (O), underflow
(U), divide by zero (Z), and invalid operation (V) —-- with exception bits, trap en-
ables, and sticky bits (status flags). The FPA adds a sixth exception type, unimple-
mented operation (E), to be used in those cases where the FPA itself cannot imple-
ment the standard MIPS floating-point architecture, including cases where the FPA
cannot determine the correct exception behavior. This exception indicates that a
software implementation must be used. The unimplemented operation exception
has no trap enable or sticky bit; whenever this exception occurs, an unimplemented

exception trap is taken (if the FPA’s interrupt input to the R2000 is enabled).

Figure 8.1 illustrates the Control/Status register bits used to support exceptions.
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Figure 8.1 Control/Status Register Exception/Sticky/TrapEnable Bits

Each of the five IEEE exceptions (V, Z, O, U, 1) is associated with a trap under
user control which is enabled by setting one of the five TrapEnable bits. When an
exception occurs, both the corresponding Exception and Sticky bits are set. If the
Qnrrpcnnnding Trngnnhlp bit is set, the FPA generates an interrupt to the R2000

CiTtspiiaiil L0 DAL =CL, UIC I'rA geliciales all Incliliy

processor and the subsequent exception processing allows a trap to be taken.
Exception Trap Processing

When a floating-point exception trap is taken, the R2000 Processor’s Cause register
(described in Chapter 5) indicates that an external interrupt from the FPA is the
cause of the exception and the R2000’s EPC (Exception Program Counter) contains
the address of the instruction that caused the exception trap.

For each IEEE standard exception, a status flag (Sticky bit) is provided that is set on
any occurrence of the corresponding exception condition with no corresponding ex-
ception trap signaled. The Sticky bits may be reset by writing a new value into the
Control/Status register and may be saved and restored individually, or as a group,
by software.

When no exception trap is signaled, a default action is taken by the FPA, which
provides a substitute value for the original, exceptional, result of the floating—point
operation. The default action taken depends on the type of exception, and in the
case of the Overflow exception, the current rounding mode. Table 8.1 lists the
default action taken by the FPA for each of the IEEE exceptions.
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Exception R;‘I’L‘:e'"g Default Action (no exception trap signaled)
V |Invalid Operation —_— Supply a quiet NaN.
Z | Division by zero - Supply a properly signed .
RN Modify overflow values tooo with the sign of the intermediate result.
RZ Modify overflow values to the format’s largest finite
O |Overflow number with the sign of the intermediate result.
RP Modify negative overflows to the format’s most negative
finite number. Modify positive overflows to + oo.
RM Modify positive overflows to the format’s largest finite
number. Modify negative overflows to — oo .
U | Underflow - Generate an Unimplemented exception.
Inexact _ Supply a rounded result.

Table 8.1 FPA Exception Default Actions

The FPA internally detects eight different conditions that can cause exceptions.
When the FPA encounters one of these unusual situations, it will cause either an
IEEE exception or an Unimplemented Operation exception (E). Table 8.2 lists the
exception-causing situations and contrasts the behavior of the FPA with the IEEE
standard’s requirements.

FPA internal resuit Slt‘;lc:lfd E‘;: i Dligg #|:Note
Inexact result I 1 1 loss of accuracy
Exponent overflow oI Ol O 1 |normalized exponent > Emax
Divide by zero V4 Z Z zero is (exponent = Emin-1, mantissa = 0)
Overflow on convert \' v E source out of integer range
Signaling NaN source v v E quiet NaN source produces quiet NaN result
Invalid operation v \Y% E 0/0 etc.
Exponent underflow U E E normalized exponent < Emin
Denormalized source none E E exponent = Emin-1 and mantissa<>0
. * Standard specifies inexact exception on overflow only if overflow trap is disabled. ::

Table 8.2 FPA Exception-causing Conditions

The sections that follow describe the conditions that cause the FPA to generate each
of its six exceptions and details the FPA’s response to each of these exception-caus-
ing situations.
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Inexact Exception (1)

The FPA generates this exception if the rounded result of an operation is not exact
or if it overflows.

NOTE: The FPA usually examines the operands of floating point operations before
execution actually begins to determine (based on the exponent values of the oper-
ands) if the operation can possibly cause an exception. If there is a possibility of an
instruction causing an exception trap, then the FPA uses a coprocessor stall mecha-
nism to execute the instruction. It is impossible, however, for the FPA to predeter-
mine if an instruction will produce an inexact result. Therefore, if inexact exception
traps are enabled, the FPA uses the coprocessor stall mechanism to execute all
floating point operations that require more than one cycle. Since this mode of
execution can impact performance, inexact exception traps should be enabled only
when necessary.

Trap Enabled Results: If inexact exception traps are enabled, the result register is
not modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to the desti-
nation register if no other software trap occurs.
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Invalid Operation Exception (V)

The invalid operation exception is signaled if one or both of the operands are invalid
for an implemented operation. The invalid operations are:

1) Addition or subtraction: magnitude subtraction of infinities, such as:
( + oo) - ( + oo )

2) Multiplication: 0 times oo, with any signs

3) Division: 0 + 0, or o =+ o, With any signs

4) Conversion of a floating—point number to a fixed-point format when
an overflow, or operand value of infinity or NaN, precludes a faith-
ful representation in that format

5) Comparison of predicates involving < or > without ?, when the oper-
ands are “unordered”

6) Any arithmetic operation on a signaling NaN. Note that a move
(MOV) operation is not considered to be an arithmetic operation,
but that ABS and NEG are considered to be arithmetic operations
and will cause this exception if one or both operands is a signaling
NaN.

Software may simulate this exception for other operations that are invalid for the
given source operands. Examples of these operations include IEEE-specified func-
tions implemented in software, such as Remainder: x REM y, where y is zero or x is
infinite; conversion of a floating—point number to a decimal format whose value
causes an overflow or is infinity or NaN; and transcendental functions, such as In
(-5) or cos"l(3). Refer to Appendix B for examples or routines to handle these
cases.

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: The FPA always signals an Unimplemented exception be-
cause it does not create the NaN that the Standard specifies should be returned
under these circumstances.
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Division-by-Zero Exception (2)

The division by zero exception is signaled on a divide operation if the divisor is zero
and the dividend is a finite non-zero number.

Trap Enabled Results: The result register is not modified, and the source registers
are preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly signed infin-
ity.
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Overflow Exception (O)

The overflow exception is signaled when what would have been the magnitude of the
rounded floating-point result, were the exponent range unbounded, is larger than
the destination format’s largest finite number. (This exception also sets the Inexact
exception and sticky bits.)

Trap Enabled Results: The result register is not modified, and the source registers
are preserved.

Trap Disabled Results: The result, when no trap occurs, is determined by the
rounding mode and the sign of the intermediate result (as listed in Table 8.1).
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Underflow Exception (U)

The FPA never generates an Underflow exception and never sets the U bit in either
the Exceptions field or Sticky field of the Control/Status register. If the FPA detects a
condition that could be either an underflow or a loss of accuracy, it generates an
Unimplemented exception.
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Unimplemented Operation Exception (E)

The FPA generates this exception when it attempts to execute an instruction with an
OpCode (bits 31-26) or format code (bits 24-21) which has been reserved for future
use.

This exception is not maskable: the trap is always enabled. When an Unimple-
mented Operation is signaled, an interrupt is sent to the R2000 Processor so that the
operation can be emulated in software. When the operation is emulated in software,
any of the IEEE exceptions may arise; these exceptions must, in turn, be simulated.

This exception is also generated when any of the following exceptions are detected
by the FPA:

Denormalized Operand
Not-a-Number (NaN) Operand
Invalid operation with trap disabled

Denormalized Result
o Underflow

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: This trap cannot not be disabled.
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Saving and Restoring State

Thirty-two coprocessor load or store instructions will save or restore the FPA’s
floating-point register state in memory. The contents of the Control/Status register
can be saved using the “move to/from coprocessor control register” instructions
(CTC1/CFC1). Normally, the Control/Status register contents are saved first and
restored last.

If the Control/Status register is read when the coprocessor is executing one or more
floating-point instructions, the instructions in progress (in the pipeline) are com-
pleted before the contents of the register are moved to the main processor. If an
exception occurs during one of the in-progress instructions, that exception is written
into the Control/Status register Exceptions field.

Note that the Exceptions field of the Control/Status register holds the results of only
one instruction: the FPA examines source operands before an operation is initiated
to determine if the instruction can possibly cause an exception. If an exception is
possible, the FPA executes the instruction in “stall” mode to ensure that no more
than one instruction at a time is executed that might cause an exception.

All of the bits in the Exceptions field can be cleared by writing a zero value to this
field. This permits restarting of normal processing after the Control/Status register
state is restored.
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R2000 Processor
Instruction Set Details

This appendix provides a detailed description of the operation of each R2000 in-
struction. The instructions are listed in alphabetical order.

Refer to Appendix B for a detailed description of the R2010 FPA instructions.

The exceptions that may occur due to the execution of each instruction are listed
after the description of each instruction. The description of the immediate causes
and manner of handling exceptions is omitted from the instruction descriptions in
this chapter. Refer to Chapter 5 for detailed descriptions of exceptions and han-
dling.

A chart on the last page of this appendix lists the bit encoding for the constant fields
of each instruction.
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Instruction Classes

R2000 instructions are divided into the following classes:

® Load/Store instructions move data between memory and general regis-
ters. They are all I-type instructions, since the only addressing mode
supported is base register + 16-bit immediate offset.

e Computational instructions perform arithmetic, logical and shift op-
erations on values in registers. They occur in both R-type (both oper-
ands are registers) and I-type (one operand is a 16-bit immediate)
formats.

® Jump and Branch instructions change the control flow of a program.
Jumps are always to absolute 26-bit word addresses (J-type format),
or 32-bit register addresses (R-type). Branches have 16-bit offsets
relative to the program counter (I-type). Jump and Link instructions
save a return address in Register 31.

® Coprocessor instructions perform operations in the coprocessors.
Coprocessor Loads and Stores are I-type. Coprocessor computational
instructions have coprocessor-dependent formats (see the FPA in-
structions). Coprocessor zero (CPO0) instructions manipulate the mem-
ory management and exception handling facilities of the processor.

® Special instructions perform a variety of tasks, including movement of
data between special and general registers, syscall, and breakpoint.
They are always R-type.
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Instruction Formats

Every R2000 instruction consists of a single word (32 bits) aligned on a word bound-
ary and there are only three instruction formats as shown in Figure A.1.

. _‘fype (lmmedlate)
L2625 2120 16 15 ;

| lmmedlate ]

26725 2120 1615 1110
rs | ot | _rd lshamt[ funct

is a 6-bit operation code
is a 5-bit source register specifier

is a 5-bit target (source/destination)
register or branch condition

is a 16-bit immediate, branch dis-

placement or address displacement

immediate

target is a 26-bit jump target address
rd is a 5-bit destination register specifier
[shamt is a 5-bit shift amount

Sunct is a 6-bit function field

Figure A.1 R2000 Instruction Formats
Instruction Notation Conventions

In this appendix, all variable subfields in an instruction format (such as rs, rt, imme-
diate, etc.) are shown in lower-case names.

For the sake of clarity, we sometimes use an alias for a variable subfield in the
formats of specific instructions. For example, we use rs = base in the format for
Load and Store instructions. Such an alias is always lower case, since it refers to a
variable subfield.
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In the instruction descriptions that follow, the Operation section describes the opera-

tion perfo

rmed by each instruction using a high-level language notation. Special

symbols used in the notation are described in Table A.2.

_ Symbol |  Meaning
— Assignment
I Bit string concatenation
x Y Replication of bit value x into a y -bit string.
Note that xis always a single-bit value.
X Selection of bits y through z of bit string x. Little—
y..z endian bit notation is always used. If y is less than z ,
this expression is an empty (zero length) bit string.
+ Two's complement addition
- Two's complement subtraction
* Two's complement multiplication
div Two’s complement integer division
mod Two's complement modulo
< Two's complement less than comparison
and Bitwise logic AND
or Bitwise logic OR
xor Bitwise logic XOR
nor Bitwise logic NOR
PRI | Soro hltoshots 16 altor the contents of GPRIO] have:
no effect.

CPR[z,x] Coprocessor unitz, general register x

CCR[zx] Coprocessor unitz, control register x

T+ i Indicates the time steps (CPU cycles) between opera-
tions. Thus, operations identified as occurring at

T+1 are performed during the cycle following the one
where the instruction was initiated. This type of
operation occurs with loads, stores, jumps, branches
and coprocessor instructions.

vAddress Virtual address

pAddress Physical address

Table A.2 R2000 Instruction Operation Notations
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Instruction Notation Examples

The following examples illustrate the application of some of the instruction notation
conventions:

_Example #1:
GPR[t] « immediate | O 18

'Slxteen zero bxts are concatenated wsth an |mmed|ate

value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General Purpose Register
rt.

Example #2:
(1mmcd1ate )16 I 1mmechate5 0

Bit 15 (the sign blt) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through O of the immediate value to form a 32-bit sign-
extended value.

Load and Store Instructions

All load operations have a latency of one instruction. That is, the instruction imme-
diately following a load cannot use the contents of the register which will be loaded
with the data being fetched from storage. An exception is that the target register for
the load word left and load word right instructions may be specified as the same
register used as the destination of a load instruction that immediately precedes it.

In the load/store operation descriptions, the functions listed in Table A.2a are used
to summarize the handling of virtual addresses and physical memory.
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Function | Descripton = .
Addr Uses the TLB to find the physical address given the virtual
Translation address. The function fails and an exception is taken if the

entry for the page containing the virtual address is not
present in the TLB (Translation Lookaside Buffer).

Load Memory | Uses the cache and main memory to find the contents of the
word containing the specified physical address. The low-order
two bits of the address and the access type field indicate
which of each of the four bytes within the data word need to
be returned. If the cache is enabled for this access, the
entire word is returned and loaded into the cache.

Store Memory| Uses the cache, write buffer, and main memory to store the
word or part of word specified as data into the word con-
taining the specified physical address. The low-order two bits
of the address and the access type field indicate which of the
four bytes within the data word should be stored.

Table A.2a Load/Store Common Functions

The access type field indicates the size of the data item to be loaded or stored as
shown in Table A.2b. Regardless of access type or byte-numbering order (endian-
ness), the address specifies the byte which has the smallest byte address of the bytes
in the addressed field. For a big-endian machine, this is the leftmost byte and
contains the sign for a two’s complement number; for a little-endian machine, this
is the rightmost byte and contains the lowest precision byte.

. Access Type |

'Mnemonic | Value|
WORD 3 word (32 bits)
;@%E- 2 | triple-byte (24 bits)

HALFWORD| 1 halfword (16 bits)
BYTE 0 byte (8 bits)

Table A.2b Access Type Specifications for Loads/Stores

The bytes within the addressed word which are used can be determined directly
from the access type and the two low-order bits of the address, as shown in Table
A.2c. Note that certain combinations of access type and low-order address bits can
never occur (WORD/01/10/11, TRIPLE-BYTE/10/11, HALFWORD/01/11).
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A_lc_cess Low-Order Bytes Accessed
ype Address - -
. e H I |
- 1B|t% 31 Big-Endian ol 31 Little-Endian 0
1 1
(word) 0 o
1.0 0o
(triple-byte) 0 1
0 1 0 0
(halfword) 1 0
0 0 0 0
(byte) 0 1
10
1 1

Table A.2c Byte Specifications for Loads/Stores
Jump and Branch Instructions

All jump and branch instructions are implemented with a delay of exactly one in-
struction. That is, the instruction immediately following a jump or branch (i.e.,
occupying the delay slot) is always executed while the target instruction is being
fetched from storage. It is not valid for a delay-slot to be occupied itself by a jump
or branch instruction; however, this error is not detected, and the results of such an
operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction during a
delay slot, the R2000 sets the EPC register to point at the jump or branch instruction
which precedes it. When the code is restarted, both the jump or branch instructions
and the instruction in the delay slot are re-executed.

Because jump and branch instructions may be restarted after exceptions or inter-
rupts, they must be restartable. Therefore, when a jump or branch instruction stores
a return link value, register 31 may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and Link Register
instruction must use a register whose two low-order bits are zero. If these low order
bits are not zero, an address exception will occur when the jump target instruction is
subsequently fetched.
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Coprocessor Instructions

The MIPS architecture provides four coprocessor units, or classes. Coprocessors are
alternate execution units, which have separate register files from the R2000 proces-
sor. Each coprocessor has 2 register spaces, each with thirty-two 32-bit registers.
The first space, coprocessor general registers, may be directly loaded from memory
and stored into memory, and their contents may be transferred between the
coprocessor and processor. The second, coprocessor control registers, may only have
their contents transferred directly between the coprocessor and processor. Coproces-
sor instructions may alter registers in either space.

Normally, by convention, coprocessor control register 0 is interpreted as a coproces-
sor revision register. However, the system control coprocessor (CP0) uses coproces-
sor general register 15 for the processor/coprocessor revision register. The register’s
low-order byte (bits 7..0) is interpreted as a coprocessor unit implementation de-
scriptor. The second byte (bits 15..8) is interpreted as a coprocessor unit revision
number. The contents of the high-order halfword of the register are not defined.

System Control Coprocessor (CP0) Instructions

There are some special limitations imposed on operations involving the System Con-
trol Coprocessor (CP0) that is incorporated within the R2000. Although load and
store instructions to transfer data to and from coprocessors and move control to/
from coprocessor instructions are generally permitted by the R2000 architecture,
CPO is given a somewhat protected status since it has responsibility for exception
handling and memory management. Therefore, the move to/from coprocessor in-
structions are the only valid mechanism for reading from and writing to the CP0
registers.

Several coprocessor operation instructions are defined for CP0 to directly read,
write, and probe TLB entries and to modify the operating modes in preparation for
returning to user-mode or interrupt-enabled states.
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ADD ADD

Format:
ADD rd,rs,rt
Description:

The contents of general register rs and the contents of general register rt are added
to form a 32-bit result. The result is placed into general register rd.

An overflow exception occurs if the two highest order carry-out bits differ (two’s

Cgm?lpmpnf overfl nu!) .

1INCIN 220V

Operation:

T: GPR[rd] + GPR[rs] + GPRIrt]

Exceptions:

Overflow exception
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ADDI Add Immediate

E RN

Format:
ADDI rt,rs,immediate
Description:

The 16-bit immediate is sign-extended and added to the contents of general register
rs to form a 32-bit result. The result is placed into general register rt.

An overflow exception occurs if the two highest order carry-out bits differ (two’s
complement overflow).

Operation:

T: GPR [rt] « GPR[rs] + (immediate,, )13“ immediate,

Exceptions:

Overflow exception
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Add Immediate Unsigned ADDIU

Format:
ADDIU rt,rs,immediate
Description:

The 16-bit immediate is sign-extended and added to the contents of general register
rs to form a 32-bit result. The result is placed into general register rt. No overflow
exception occurs under any circumstances.

Note that the only difference between this instruction and the ADDI instruction is
that ADDIU never causes an overflow exception.

Operation:

T: GPR[rt] + GPRI[rs]+ (immediate,;)° | immediate,; ,

Exceptions:

None.
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ADDU ADD Unsigned

SPECIAL

Format:
ADDU rd,rs,rt
Description:

The contents of general register rs and the contents of general register r¢t are added
to form a 32-bit result. The result is placed into general register rd.

No overflow exception occurs under any circumstances.

Note that the only difference between this instruction and the ADD instruction is
that ADDU never causes an overflow exception.

Operation:

T: GPR([rd] +— GPR([rs] + GPR[rt]

Exceptions:
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Format:
AND rd,rs,rt
Description:

The contents of general register rs are combined with the contents of general regis-

ter rt in a bit-wise logical AND operation. The result is placed into general register
rd.

Operation:

T GPR[rd] «+ GPRI[rs] and GPR[rt]

Exceptions:

None.
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AN DI And Immediate

Format:
ANDI rt,rs,immediate
Description:

The 16-bit immediate is zero-extended and combined with the contents of general
register rs in a bit-wise logical AND operation. The result is placed into general
register rt.

Operation:

T GPR[rt] ~ 0" | (immediate and GPRIrs}g. o)

Exceptions:

None.
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Branch On Coprocessor z False BCZF

Format:
BCzF offset
Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 32
bits. If the coprocessor z’s condition signal (CpCond) is false, then the program
branches to the target address, with a delay of one instruction.

Operation:
14 2
T: target « (offset,;) | offset || 0
condition—not CpCond|z]
T+1: if condition then
PC+ PC + target

endif

Exceptions:

Coprocessor unusable exception
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BCzT Branch On Coprocessor z True

Format:

BCzT offset
Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 32
bits. If the coprocessor z's condition signal (CpCond) is true, then the program
branches to the target address, with a delay of one instruction.

Operation:
14 2
T: target « (offset,;)" [offset || O
condition + CpCond|[z]
T+1: if condition then
PC+ PC + target
endif
Exceptions:

Coprocessor unusable exception
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Branch On Equal BEQ

offset

Format:
BEQ rs,rt,offset
Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left wo bits and sign-extended to 32
bits. The contents of general register rs and the contents of general register r¢t are
compared. If the two registers are equal, then the program branches to the target
address, with a delay of one instruction.

Operation:
14 2
T: target « (offset ) |loffset || O
condition+ (GPR[rs] = GPR[rt])
T+1: if condition then
PC+ PC + target
endif

Exceptions:
None.
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BGEZ Branch On Greater

Than Or Equal To Zero

offset

Format:
BGEZ rs,offset
Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 32
bits. If the contents of general register rs have the sign bit cleared, then the program
branches to the target address, with a delay of one instruction.

Operation:
14 2
T: target « (offset,s) | offset || O
condition« (GPR[rs] 3, = 0)
T + 1: if condition then
PC+ PC + target
endif

Exceptions:
None.
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Branch On Greater Than BGEZAL

Or Equal To Zero And Link

Format:
BGEZAL rs,offset
Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 32
bits. Unconditionally, the address of the instruction after the delay slot is placed in
the link register, r31. If the contents of general register rs have the sign bit cleared,
then the program branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not
restartable. An attempt to execute this instruction is not trapped, however.

Operation:
T: target h(offset',s)“ loffset | 02
condition « (GPR[rs] ,, = 0)
GPR[31]+~ PC + 8
T + 1. if condition then
PC+ PC + target -
endif
Exceptions:
None.
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BGTZ Branch On Greater

Than Zero

Format:
BGTZ rs,offset
Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 32
bits. The contents of general register rs are compared to zero. If the contents of
general register rs have the sign bit cleared and are not equal to zero, then the
program branches to the target address, with a delay of one instruction.

Operation:
14 2
T: target + (offset,g) | offset | O
condition + (GPR[rs] 3; = 0) and (GPR[rs] = GPRI[r0])
T + 1: if condition then
PC+ PC + target
endif

Exceptions:
None.
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Branch on Less Than
Or Equal To Zero BLEZ

offset

Format:
BLEZ rs,offset
Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 32
bits. The contents of general register rs is compared to zero. If the contents of
general register rs have the sign bit set, or are equal to zero, then the program
branches to the target address, with a delay of one instruction.

Operation:
14 2
T: target « (offset 5) " [loffset || 0
condition« (GPR[rs];; = 1) or (GPR[rs] = GPR[r0])
T + 1: if condition then
PC+ PC + target
endif
Exceptions:
None.
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BLTZ Branch On Less Than Zero

Format:
BLTZ rs,offset

Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 32
bits. If the contents of general register rs have the sign bit set, then the program
branches to the target address, with a delay of one instruction.

Operation:
14 2
T: target « (offset s)  |offset | O
condition+— (GPR[rs] 5, = 1)
T + 1: if condition then
PC+ PC + target
endif

Exceptions:
None.
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Branch On Less BLTZAL

Than Zero And Link

BLTZAL

Format:
BLTZAL rs,offset
Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 32
bits. Unconditionally, the address of the instruction after the delay slot is placed in
the link register, r31. If the contents of general register rs have the sign bit set, then
the program branches to the target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not
restartable. An attempt to execute this instruction is not trapped, however.

Operation:
14 2
T: target « (offset ) | offset || O
condition « (GPR[rs],, = 1)
GPR[31]+— PC + 8
T + 1: if condition then
PC+ PC + target
endif
Exceptions:
None.
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BNE Branch On Not Equal

offset

Format:
BNE rs,rt,offset
Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 32
bits. The contents of general register rs and the contents of general register rt are
compared. If the two registers are not equal, then the program branches to the target
address, with a delay of one instruction.

Operation:
14 2
T: target « (offset,5) | offset || 0
condition « (GPR[rs] £ GPR[rt])
T + 1: if condition then
PC+ PC + target
endif

Exceptions:
None.
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Break BREAK

| SPECIAL

Format:
BREAK
Description:

A breakpoint trap occurs, immediately and unconditionally transferring control to
the exception handler.

The code field is available for use as software parameters, but is retrieved by the
exception handler only by loading the contents of the memory word containing the
instruction.

Operation:

PC «+ ExceptionHandler

Exceptions:

Breakpoint trap

R2000 Architecture A-25



Appendix A

CFCZ Move Control From
Coprocessor

Format:
CFCz rt,rd
Description:

The contents of coprocessor control register rd of coprocessor unit z are loaded into
general register rt.

Operation:

T: data «+ CCRz,rd]

T + 1: GPR[rt] + data

Exceptions:

Coprocessor unusable exception
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Coprocessor Operation COPZ

Format:

COPz cofun
Description:

A coprocessor operation is performed. The operation may specify and reference
internal coprocessor registers, and may change the state of the coprocessor condi-
tion line, but does not modify state within the processor or the cache/memory sys-
tem.

Operation:

T: CoprocessorOperation (z, cofun)

Exceptions:

Coprocessor unusable exception
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CTCZ Move Control to

Coprocessor

Format:
CTCz rtrd
Description:

The contents of general register rt are loaded into control register rd of coprocessor
unit z.

Operation:

T: data «+ GPR[rt]
T + 1: CCR[z,rd] + data

Exceptions:

Coprocessor unusable exception
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Divide DIV

SPECIAL

Format:
DIV rs,rt
Description:

The contents of general register rs are divided by the contents of general register rt,
treating both operands as 32-bit two’s complement values. No overflow exception
occurs under any circumstances.

When the operation completes, the quotient word of the double result is loaded into
special register LO, and the remainder word of the double result is loaded into
special register HI. The MFHI and MFLO instructions are interlocked so that any
attempt to read them before operations have completed will cause execution of in-
structions to be delayed until the operation finishes.

Divide operations are performed by a separate, autonomous execution unit within
the R2000. After a divide operation is started, execution of other instructions may
continue in parallel. The multiply/divide unit continues to operate during cache miss
and other delaying cycles in which no instructions are executed.

Operation:
T-2 LO + undefined
HI  « undefined
T-1 LO « undefined
HI  + undefined
T LO + GPR[rs] div GPR[rt]
HI + GPR[rs]mod GPR[rt]
Exceptions:
None.
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DIVU Divide Unsigned

Format:

DIVU rs,rt
Description:

The contents of general register rs are divided by the contents of general register rt,
treating both operands as 32-bit two’s unsigned values. No overflow exception
occurs under any circumstances.

When the operation completes, the quotient word of the double result is loaded into
special register LO, and the remainder word of the double result is loaded into
special register HI. The MFHI and MFLO instructions are interlocked so that any
attempt to read them before operations have completed will cause execution of in-
structions to be delayed until the operation finishes.

Divide operations are performed by a separate, autonomous execution unit within
the R2000. After a divide operation is started, execution of other instructions may
continue in parallel. The multiply/divide unit continues to operate during cache miss
and other delaying cycles in which no instructions are executed.

Operation:
T-2: LO + undefined
Hl + undefined
T-1: LO « undefined
HI  + undefined
T LO«~ (0ll GPRIrs]) div (0 | GPRIrt])
HI « (0|l GPR[rs]) mod (O} GPRIrt]
Exceptions:
None.
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Format:

J target
Description:

The 26-bit target address is shifted left two bits, combined with the high order 4 bits
of the current program counter, and the program unconditionally jumps to the calcu-
lated address, with a delay of one instruction.

Operation:
T:  temp+ PC 4, | target | 02
T+1: PC+temp

Exceptions:

None.
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JAL Jump And Link

Format:
JAL target
Description:

The 26-bit target address is shifted left two bits, combined with the high order 4 bits
of the current program counter, and the program unconditionally jumps to the calcu-
lated address, with a delay of one instruction. The address of the instruction after
the delay slot is placed in the link register, r31.

Operation:
T:  temp+PCai. 2| target || 02
GPR[31] «~ PC + 8
T+1: PC+temp
Exceptions:
None.
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Jump And Link Register JALR

Format:

JALR rs
JALR rd, rs

Description:

The program unconditionally jumps to the address contained in general register rs,
with a delay of one instruction. The address of the instruction after the delay slot is
placed in general register rd. The default value of rd, if omitted in the assembly
language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an instruction does not
have the same effect when re-executed. However, an attempt to execute this in-
struction is not trapped;. the result of executing such an instruction is undefined.

Operation:
T: temp + GPR|[rs]
GPR[rd] <~ PC + 8
T+1: PC+temp
Exceptions:
None.

Since instructions must be word-aligned, a Jump and Link Register instruction must
specify a target register (rs) whose two low-order bits are zero. If these low-order
bits are not zero, an address exception will occur when the jump target instruction is
subsequently fetched.
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JR Jump Register

Format:
JR rs
Description:

The program unconditionally jumps to the address contained in general register rs,
with a delay of one instruction.

Operation:
T: temp+ GPR[rs]
T+1: PC+temp
Exceptions:
None.

Since instructions must be word-aligned, a Jump Register instruction must specify a
target register (rs) whose two low-order bits are zero. If these low-order bits are
not zero, an address exception will occur when the jump target instruction is subse-
quently fetched.
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Format:

LB rt,offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a 32-bit unsigned effective address. The contents of the byte at the memory
location specified by the effective address are sign-extended and loaded into general

register rt.

Operation:

T:

T+1:

vAddress« (offset ,;)'® | offset .0 tGPR[base]
(pAddress, nonCacheable) « AddrTranslation (vAddress)
mem+ LoadMemory (nonCacheable, BYTE, pAddress)

byte o—vAddressL‘ °

if BigEndian then

24
GPR[rt] + (mem_ . . ..) Imem e byre.. 24-87byte

else 2
GPR([rt] + (mem 7¢g-by1.) I
endif

mem 7+8"byte.8byte

Exceptions:

UTLB miss fault

TLB miss fault

Bus error exception
Address error exception
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LBU Load Byte Unsigned

oo [ [ | o |

Format:
LBU rt,offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a 32-bit unsigned effective address. The contents of the byte at the memory

location specified hv the effective address are zero-extended and loaded into gen-

1VCQUUIL Spetiiily ciiclu QUGICSS ZTTO—CACIICUCO QlliCl 10aUuCl IRe

eral register rt.

Operation:

T vAddress« (offset ,5)'® || offset,, , +GPR[base]

(pAddress, nonCacheable) + AddrTranslation (vAddress)
mem + LoadMemory (nonCacheable, BYTE, pAddress)
byte +— vAddress, ,
T + 1: if BigEndian then
GPR[rt] + 0% || MeM3_g~ byte..24-8"byte
else 24
GPR[“] «~0 “ mem; g- byte..8"byte
endif

Exceptions:

UTLB miss fault

TLB miss fault

Bus error exception
Address error exception
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Load Halfword LH

Format:
LH rt,offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a 32-bit unsigned effective address. The contents of the halfword at the
memory location specified by the effective address are sign-extended and loaded
into general register rt.

If the least significant bit of the effective address is non-zero, an address error
exception occurs.

Operation:

T: vAddress« (offset ,5)'° || offset,, , + GPR[base]
(pAddress, nonCacheable) +— AddrTranslation (vAddress)
mem«— LoadMemory (nonCacheable, HALFWORD, pAddress)
byte + vAddress, ,

T + 1: if BigEndian then

GPRIrt] «—(mem ) mem

31-8 byte 31-8" byte..16-8"byte

else
GPR[rt] + (mem__ . %] mem
. t5v8” byte ) I 15+48" byte..8"byte
endif

Exceptions:

UTLB miss fault

TLB miss fault

Bus error exception
Address error exception
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LHU Load Halfword Unsigned

Format:

LHU rt,offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a 32-bit unsigned effective address. The contents of the halfword at the
memory location specified by the effective address are zero-extended and loaded
into general register rt.

If the least significant bit of the effective address is non-zero, an address error
exception occurs.

Operation:

T vAddress«— (offset ,5)'® || offset,, , +GPR[base]
(pAddress, nonCacheable) +— AddrTranslation (vAddress)
mem « LoadMemory (nonCacheable, HALFWORD, pAddress)
byte + vAddress , ,

T + 1: if BigEndian then

16
elsspmn] ~ o] M, _g- byte..16-8"byte

GPR[rt] «~0 || MeM, g s byte..8"byte
endif

Exceptions:

UTLB miss fault

TLB miss fault

Bus error exception
Address error exception
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Load Upper Immediate LUI

immediate

Format:
LUI rt,immediate
Description:

The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits of zeroes.
The result is placed into general register rt.

Operation:

T: GPRI[rt] ~ immediate | 0'®

Exceptions:

None.
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LW : Load Word

Format:

LW rt,offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a 32-bit unsigned effective address. The contents of the word at the memory
location specified by the effective address are loaded into general register rt.

If either of the two least significant bits of the effective address is non-zero, an
address error exception occurs.

Operation:

T: vAddress+ (offset ,5) '€ || offset,, , +GPR[base]
(pAddress, nonCacheable) + AddrTranslation (vAddress)
mem+ LoadMemory (nonCacheable, WORD, pAddress)
byte + vAddress 1..0

T+1: GPR[rt] + mem;

Exceptions:

UTLB miss fault

TLB miss fault

Bus error exception
Address error exception
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Load Word To Coprocessor LWCZ

Format:
LWCz rt,offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a 32-bit unsigned effective address. The contents of the word at the memory
location specified by the effective address are loaded into coprocessor register rt of
COprocessor unit z.

If either of the two least significant bits of the effective address is non-zero, an
address error exception occurs.

Operation:
T:  vAddress « (offset ,5)'® | offset ,5 , + GPR[base])
(pAddress, nonCacheable) + AddrTranslation (vAddress)
mem+ LoadMemory (nonCacheable, WORD pAddress ,; , || 0 2
byte «— vAddress i..0
T+1: CPR[z,rt] «mem;
Exceptions:

UTLB miss fault

TLB miss fault

Bus error exception

Address error exception
Coprocessor unusable exception
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LWL Load Word Left

Format:

LWL rt,offset(base)

Description:

This instruction can be used in combination with the LWR instruction to load a
register with four consecutive bytes from memory, when the bytes cross a boundary
between two words. LWL loads the left portion of the register from the appropriate
part of the high-order word; LWR loads the right portion of the register from the
appropriate part of the low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the contents of general
register base to form a 32-bit unsigned effective address which can specify an arbi-
trary byte. It reads bytes only from the word in memory which contains the speci-
fied starting byte. From one to four bytes will be loaded, depending on the starting
byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the
high-order (left-most) byte of the register; then it proceeds toward the low-order
byte of the word in memory and the low-order byte of the register, loading bytes
from memory into the register until it reaches the low-order byte of the word in
memory. The low-order (right-most) byte(s) of the register will not be changed.

memory
(big—endian) register
before L A| B] C| D] s24
\ LWL $24,1($0)
AN
N
~
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Load Word Left LWL
(continued)

The contents of general register r¢t are internally bypassed within the processor so
that no NOP is needed between an immediately preceding load instruction which

specifies register rt and a following LWL (or LWR) instruction which also specifies
register rt.

Address error exceptions due to byte alignment are suppressed by this instruction.

Operation:

T: vAddress« (offset 5)'® || offset,, , +GPR[base]
(pAddress, nonCacheable) +— AddrTranslation (vAddress)
byte + vAddress 1..0
if BigEndian then
mem+ LoadMemory (nonCacheable,WORD-byte, pAddress)
else
mem + LoadMemory (nonCacheable, byte,pAddress a1..2 |02 )
endif
T + 1. if BigEndian then

eGPR[rt] = mMem 31_g- pyte..0 I GPRIr) 8 byte-1..0

GPRI[rt] «mem ;. q. e .0 | GPRIM] 25 g-pye..0
endit

els

Exceptions:

UTLB miss fault

TLB miss fault

Bus error exception
Address error exception
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LWR Load Word Right

offset

Format:
LWR rt,offset(base)
Description:

This instruction can be used in combination with the LWL instruction to load a
register with four consecutive bytes from memory, when the bytes cross a boundary
between two words. LWR loads the right portion of the register from the appropri-
ate part of the low-order word; LWL loads the left portion of the register from the
appropriate part of the high-order word.

The LWR instruction adds its sign—-extended 16-bit offset to the contents of general
register base to form a 32-bit unsigned effective address which can specify an arbi-
trary byte. It reads bytes only from the word in memory which contains the speci-
fied starting byte. From one to four bytes will be loaded, depending on the starting
byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the
low-order (right-most) byte of the register; then it proceeds toward the high-order
byte of the word in memory and the high-order byte of the register, loading bytes
from memory into the register until it reaches the high-order byte of the word in
memory. The high-order (left-most) byte(s) of the register will not be changed.

memory
(big-endian) register
address 6 7
address O] 2| 3 before | A] B| C| D] s24
AN LWR $24,4(50)
N
~
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Load Word Right LWR

(continued)

The contents of general register r¢t are internally bypassed within the processor so
that no NOP is needed between an immediately preceding load instruction which
specifies register rt and a following LWR (or LWL) instruction which also specifies
register rt.

Address error exceptions due to byte alignment are suppressed by this instruction.

Operation:

T vAddress« (offset ,5) ' || offset,, , +GPR[base]
(pAddress, nonCacheable) + AddrTranslation (vAddress)
byte « vAddress, ,

if BigEndian then

elsgwem«- LoadMemory (nonCacheablebyte, pAddress a1..2 || 02)

mem+ LoadMemory(nonCacheable, byte, WORD-byte, pAddress)
endif

T + 1: if BigEndian then
GPR[rt] «GPR[rt] 31..8+B'byte“ MeMy,  24-8*byte

else
GPR[rt] + GPR[rt]

R 31..24-8"byte “ mem 31..8+8"byte
endif

Exceptions:

UTLB miss fault

TLB miss fault

Bus error exception
Address error exception
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MFCO0 Move From

System Control Coprocessor

Format:
MFCO0 rt,rd

Description:

The contents of coprocesso: register rd of System Control Coprocessor (CP0) are
loaded into general register rt.

Operation:

T: data + CPR[O0, rd]
T+ 1: GPR[rt] ~data

Exceptions:

Coprocessor unusable exception
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Move From Coprocessor MFCZ

Format:

MFCz rt,rd

Description:

The contents of coprocessor register rd of coprocessor unit z are loaded into general
register rt.

Operation:

T: data + CPR[z,rd]
T+1: GPR[rt] + data

Exceptions:

Coprocessor unusable exception
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MFHI Move From HI

SPECIAL

Format:

MFHI rd

Description:

The contents of special register HI are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two instructions which
follow a MFHI instruction may not be any of the instructions which modify the HI
register: MULT, MULTU, DIV, DIVU, MTHI.

Operation:

T: GPR[rd]+ HI

Exceptions:

None.
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Move From Lo MFLO

SPECIAL

| M ———

Format:
MFLO rd

Description:
The contents of special register LO are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two instructions which
follow a MFLO instruction may not be any of the instructions which modify the LO

A AT TT

register: MULT, MULTU, DIV, DIVU, MTLO.

Operation:

T: GPR[rd] +LO

Exceptions:

None.
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MTCO Move To

System Control Coprocessor

Format:

MTCO rt,rd
Description:

The contents of general register rt are loaded into coprocessor register rd of the
System Control Coprocessor (CP0).

Because the state of the virtual address translation system may be altered by this
instruction, the operation of load and store instructions and TLB operations immedi-
ately prior to and after this instruction are undefined.

Operation:

T: data +GPR[rt]
T+ 1: CPR[O,rd] +data

Exceptions:

Coprocessor unusable exception
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Move To Coprocessor MTCz

Format:

MTCz rt,rd

Description:

The contents of general register rt are loaded into coprocessor register rd of
COprocessor unit z.

Operation:

T: data+ GPR[rt]
T+1: CPR[z,rd] + data

Exceptions:

Coprocessor unusable exception
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MTHI Move To HI

SPECIAL

Format:

MTHI rs

Description:

The contents of general register 7s are loaded into special register HI.

If a MTHI operation is executed following a MULT, MULTU, DIV, or DIVU instruc-
tion, but before any MFLO, MFHI, MTLO, or MTHI instructions, the contents of
special register LO are undefined.

Operation:
T-2: HI  « undefined
T-1: HI  « undefined
T: HI + GPR]rs]

Exceptions:

None.
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Move To LO MTLO

Format:

MTLO rs

Description:

The contents of general register rs are loaded into special register LO.

If a MTLO operation is executed following a MULT, MULTU, DIV, or DIVU in-
struction, but before any MFLO, MFHI, MTLO, or MTHI instructions, the contents
of special register HI are undefined.

Operation:
T-2: LO « undefined
T-1: LO + undefined
T: LO + GPRIrs]

Exceptions:

None.
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MULT y Multiply

seoAL] 1o |

Format:
MULT rs,rt
Description:

The contents of general register rs and the contents of general register rt are multi-
plied, treating both operands as 32-bit two’s complement values. No overflow ex-
ception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded
into special register LO, and the high-order word of the double result is loaded into
special register HI. The MFHI and MFLO instructions are interlocked so that any
attempt to read them before operations have completed will cause execution of in-
structions to be delayed until the operation finishes.

Multiply operations are performed by a separate, autonomous execution unit within
the R2000. After a multiply operation is started, execution of other instructions may
continue in parallel. The multiply/divide unit continues to operate during cache miss
and other delaying cycles in which no instructions are executed.

Operation:
T-2: LO « undefined
Hl « undefined
T-1: LO « undefined
HI  « undefined
T t < GPR([rs] " GPR[rt]
LO+t 31..0
HI +tea. 32
Exceptions:
None.
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Multiply Unsigned MULTU

SPECIAL

Format:
MULTU rs,rt
Déscription:

The contents of general register rs and the contents of general register rt are multi-
plied, treating both operands as 32-bit unsigned values. No overflow exception
occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded
into special register LO, and the high-order word of the double result is loaded into
attempt to read them before operations have completed will cause execution of in-
structions to be delayed until the operation finishes.

Multiply operations are performed by a separate, autonomous execution unit within
the R2000. After a multiply operation is started, execution of other instructions may
continue in parallel. The multiply/divide unit continues to operate during cache miss
and other delaying cycles in which no instructions are executed.

Operation:

+ undefined
HI  + undefined

+ undefined
HI  « undefined

T: t « (0 | GPRIrs])*(0 || GPRI[rt])
LO+~tg 0
HlI +tea..32

Exceptions:

None.
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NOR Nor

SPECIAL

Format:
NOR rd,rs,rt
Description:

The contents of general register rs are combined with the contents of general regis-

ter rt in a bit-wise logical NOR operation. The result is placed into general register
rd.

Operation:

T GPR[rd] + GPR[rs]nor GPR[rt]

Exceptions:

None.
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o OR

SPECIAL

Format:
OR rd,rs,rt
Description:

The contents of general register rs are combined with the contents of general regis-
ter rt in a bit-wise logical OR operation. The result is placed into general register rd.

Operation:

T: GPR[rd] « GPR{rs] or GPR[rt)

Exceptions:

None.
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ORI Or Immediate

Format:
ORI rt,rs,immediate
Description:

The 16-bit immediate is zero-extended and combined with the contents of general
register rs in a bit-wise logical OR operation. The result is placed into general
register rt.

Operation:

T: GPR[rt] + GPR[rs]s;.. ¢ | (immediate or GPRI[rs);s. o)

Exceptions:

None.
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Restore From Exception RFE

Format:

RFE

Description:

Restores the previous interrupt mask and kernel/user-mode bits (IEp and KUp) of
the Status register (SR) into the corresponding current status bits (IEc and KUc), and
restores the old status bits (IEo and KUo) into the corresponding status bits (IEp and
KUp). The old status bits remain unchanged.

The operation of memory references associated with load/store instructions immedi-
ately prior to an RFE instruction are unspecified. Normally, the RFE instruction
follows in the delay slot of a JR (jump register) instruction to restore the PC.

Operation:

T SR— SR;, .| SR ,

Exceptions:

Coprocessor unusable exception
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SB Store Byte

Format:
SB rt,offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a 32-bit unsigned effective address. The least significant byte of the con-
tents of register rt is stored at the effective address.

Operation:

T: vAddress«+ (offset ,5)'® || offset,. . +GPR[base]
(pAddress, nonCacheable) +— AddrTranslation (vAddress)
byte +— vAddress 1..0

if BigEndian then .
data +GPR[rt] 7+g-byte..0 J| 0 2* 5™

else

data hGPR[Tﬂ 31-8"byte..0 “OB'M.

endif

T +1: StoreMemory (nonCacheable, BYTE, data, pAddress)

Exceptions:

UTLB miss fault

TLB miss fault

TLB modification fault
Bus error exception
Address error exception
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Store Halfword SH

Format:
SH rt,offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a 32-bit unsigned effective address. The least significant halfword of the
contents of register rt is stored at the effective address.

If the least significant bit of the effective address is non-zero, an address error
exception occurs.

Operation:

T: vAddress« (offset ,5) '° | offset ., , +GPR[base]
(pAddress, nonCacheable) « AddrTranslation (vAddress)
byte «— vAddress 1..0

if BigEndian then
edata = GPRI[rt] 15 8byte..0 || 0

data + GPR([rt] ai-s-byte..0 || 0 87b¥te
endif

T +1: StoreMemory (nonCacheable, HALFWORD. data, pAddress)

els

Exceptions:

UTLB miss fault

TLB miss fault

TLB modification fault
Bus error exception
Address error exception
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SLL Shift Left Logical

o] o

Format:
SLL rd,rt,shamt
Description:

The contents of general register rt are shifted left by shamt bits, inserting zeroes into
the low order bits. The 32-bit result is placed in register rd.

Operation:

T GPR[rd] +GPR[rt] || g snamt

31-shamt, .0

Exceptions:

None.
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Shift Left Logical Variable SLLV

SPECIAL

Format:
SLLV rd,rtrs
Description:

The contents of general register rt are shifted left by the number of bits specified by
the low-order 5 bits of the contents of general register rs, inserting zeroes into the
low order bits. The 32-bit result is placed in register rd.

Operation:

T GPRIrd] ~GPRIM] 3;-gpas), ol 0 +-0

Exceptions:

None.
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SLT Set On Less Than

Format:
SLT rd,rs,rt
Description:

The contents of general register rt are compared with the contents of general regis-
ter rs. Considering both quantities as signed 32-bit integers, if the contents of gen-
eral register rs are less than the contents of general register r¢, the result is set to
one, otherwise the result is set to zero. The result is placed into general register rd.

No overflow exception occurs under any circumstances. The comparison is valid
even if the subtraction used during the comparison overflows.

Operation:
T: it GPR[rs]< GPR[rt] then
GPR[rd] «~ 0°' Il 1
else
GPR([rd]+ 0%
endif
Exceptions:
None.
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Set On Less Than Immediate SLTI

Format:
SLTI rt,rs,immediate
Description:

The 16-bit immediate is sign-extended and compared with the contents of general
register rs. Considering both quantities as signed 32-bit integers, if rs is less than
the sign-extended immediate, the result is set to one, otherwise the result is set to
zero. The result is placed into general register rt.

No overflow exception occurs under any circumstances. The comparison is valid
even if the subtraction used during the comparison overflows.

Operation:
T: if GPRI[rs]< ((immediate, )1°|I immediate_ ) then
GPR[rt] — 0 3| 1 -
else
GPR[rt] « 0%
endif
Exceptions:
None.
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Set On Less Than SLTIU

Immediate Unsigned

Format:
SLTIU rt,rs,immediate
Description:

The 16-bit immediate is sign-extended and compared with the contents of general
register rs. Considering both quantities as unsigned 32-bit integers, if rs is less than
the sign-extended immediate, the result is set to one, otherwise the result is set to
zero. The result is placed into general register rt.

No overflow exception occurs under any circumstances. The comparison is valid
even if the subtraction used during the comparison overflows.

Operation:
T: if (0 || GPRIrs]) < (0 immediate , )'®|| immediatess . ) then
GPR[rt] « 0% | 1
else
GPR[rt] « %
endif
Exceptions:
None.
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SLTU Set On Less Than Unsigned

Format:
SLTU rd,rs,rt

Description:

The contents of general register rt are compared with the contents of general regis-
ter rs. Considering both quantities as unsigned 32-bit integers, if the contents of
general register rs are less than the contents of general register rt, the result is set to
one, otherwise the result is set to zero. The result is placed into general register rd.

No overflow exception occurs under any circumstances. The comparison is valid
even if the subtraction used during the comparison overflows.

Operation:
T: if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd]«— 0"l 1
else
GPR[rd] « 0%
endif
Exceptions:
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SRA Shift Right Arithmetic

Format:
SRA rd,rt,shamt
Description: -

The contents of general register rt are shifted right by shamt bits, sign-extending the
high order bits. The 32-bit result is placed in register rd.

Operation:

T: GPRI[rd]+ (GPRIrt] ,) "™l GPRIM] 4. snamt

Exceptions:

None.
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Shift Right Arithmetic Variable SRAV

Format:
SRAYV rd,rt,rs
Description:

The contents of general register rt are shifted right by the number of bits specified
by the low-order S bits of the contents of general register rs, sign-extending the
high order bits. The 32-bit result is placed in register rd.

Operation:

T GPR(rd] « (GPR[rt] 5, ) SI™14..0 | GPR[rt] |

1..(GPR(rs] . o)

Exceptions:

None.
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SRL Shift Right Logical

Format:
SRL rd,rt,shamt
Description:

The contents of general register rt are shifted right by shamt bits, inserting zeroes
into the high order bits. The 32-bit result is placed in register rd.

Operation:

T! GPR[rd]« 0 "™ || GPRIM] 3., shamt

Exceptions:

None.
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Shift Right Logical Variable SRLYV

Format:
SRLV rd,rt,rs
Description:

The contents of general register rt are shifted right by the number of bits specified
by the low-order S bits of the contents of general register rs, inserting zeroes into
the high order bits. The 32-bit result is placed in register rd.

Operation:

T: GPR[rd] + 0 ®PRUsla.0 [GPRIrt] a1, (apRirs) 0o

Exceptions:

None.
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SUB Subtract

Format:
SUB rd,rs,rt
Description:

The contents of general register ¢ are subtracted from the contents of general regis-
ter rs to form a 32-bit result. The result is placed into general register rd.

An overflow exception occurs if the two highest order carry—out bits differ (two’s
complement overflow).

Operation:

T: GPR[rd] +—GPR([rs] — GPR|[rt]

Exceptions:

Overflow exception
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Subtract Unsigned SUBU

sreom] n | n | @ | o [ o]

Format:
SUBU rd,rs,rt
Description:

The contents of general register rt are subtracted from the contents of general regis-
ter rs to form a 32-bit result. The result is placed into general register rd.

No overflow exception occurs under any circumstances.

Note that the only difference between this instruction and the SUB instruction is that
SUBU never causes an overflow exception.

Operation:

T: GPR[rd] +GPR[rs] - GPR|rt]

Exceptions:

None.
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SW Store Word

o e[ 0 | e

Format:
SW rt,offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a 32-bit unsigned effective address. The contents of general register rt are
stored at the memory location specified by the effective address.

If either of the two least significant bits of the effective address is non-zero, an
address error exception occurs.

Operation:

T: vAddress« (offset ,5)'® || offset,, , +GPR[base]
(pAddress, nonCacheable) + AddrTranslation (vAddress)
data + GPRIrt]

T +1: StoreMemory (nonCacheable, WORD, data, pAddress)

Exceptions:

UTLB miss fault

TLB miss faulit

TLB modification fault
Bus error exception
Address error exception
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Store Word From Coprocessor SWCZ

Format:

SWCz rt,offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base
to form a 32-bit unsigned effective address. The contents of coprocessor register rt
of coprocessor unit z are stored at the memory location specified by the effective
address.

If either of the two least significant bits of the effective address is non-zero, an
address error exception occurs.

Operation:

T:  vAddress + (offset ,5)'® || offset ,; ,) + GPR[base]
(pAddress, nonCacheable) + AddrTranslation (vAddress)
data + CPR]z,t]

T+1: StoreMemory (nonCacheable, 15, data, pAddress,, , ||p2)

Exceptions:

UTLB miss fault

TLB miss fault

TLB modification fault

Bus error exception

Address error exception
Coprocessor unusable exception
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SWL Store Word Left

Format:

SWL rt,offset(base)
Description:

This instruction can be used with the SWR instruction to store the contents of a
register into four consecutive bytes of memory, when the bytes cross a boundary
between two words. SWL stores the left portion of the register into the appropriate
part of the high-order word of memory; SWR stores the right portion of the register
into the appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the contents of general
register base to form a 32-bit unsigned effective address which may specify an
arbitrary byte. It alters only the word in memory which contains that byte. From
one to four bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the high-order byte of the register and copies it to the
specified byte in memory; then it proceeds toward the low-order byte of the register
and the low-order byte of the word in memory, copying bytes from register to mem-
ory until it reaches the low-order byte of the word in memory.

memory

(big-endian) register
address 4 4| s | 6| 7

address Of o] 1 [ 2] 3

address 4 4
address 0] 0 |
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Store Word Left SWL
(continued)

Address error exceptions due to byte alignment are suppressed by this instruction.

Operation:

T: vAddress«— (offset ,5)'® || offset,, , +GPR[base]
(pAddress, nonCacheable) «+ AddrTransiation (vAddress)
byte + vAddress 1..0
if BigEndian then

data +0 8% | GPRIrt],; g-pye
else -

data + 0 24-8"ne | Gpmn]m..m—a'mo
endif

T + 1: if BigEndian then

| StoreMemory (nonCacheable, WORD-byte, data, pAddress)
else

StoreMemory (nonCacheable, byte,data, pAddress 31, 2 || 02 )

endif

Exceptions:

UTLB miss fault

TLB miss fault

TLB modification fault
Bus error exception
Address error exception
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SWR Store Word Right

offset

Format:
SWR rt,offset(base)
Description:

This instruction can be used with the SWL instruction to store the contents of a
register into four consecutive bytes of memory, when the bytes cross a boundary
between two words. SWR stores the right portion of the register into the appropriate
part of the low-order word; SWL stores the left portion of the register into the
appropriate part of the low-order word of memory.

The SWR instruction adds its sign-extended 16-bit offset to the contents of general
register base to form a 32-bit unsigned effective address which may specify an
arbitrary byte. It alters only the word in memory which contains that byte. From
one to four bytes will be stored, depending on the starting byte specified.

Conceptually, it starts at the low-order (right-most) byte of the register and copies it
to the specified byte in memory; then it proceeds toward the high-order byte of the
register and the high-order byte of the word in memory, copying bytes from register
to memory until it reaches the high-order byte of the word in memory.

memory

(big-endian) register
address 4] 4 5 6 7 o f r T r
address O 0 | 1] 2| 3] beore

$24

SWR $24,4($0)

address 7
address 0 3 after ~
l — _ —
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Store Word Right | SWR
(continued)

Address error exceptions due to byte alignment are suppressed by this instruction.

Operation:

T: vAddress+ (offset ,5)'® || offset,. , +GPR[base]
(pAddress, nonCacheable) +— AddrTranslation (vAddress)
byte « vAddress 1..0
if BigEndian then

data = GPRIM] 7,54 | 0 %7

data + GPR[rt] 41 g-pyte..0ll O Brove
endif

T +1:  if BigEndian then

StoreMemory (nonCacheable,byte,data, pAddress 3. .» I 02 )

else
gif StoreMemory (nonCacheable, WORD-byte, data, pAddress)
endi

else

Exceptions:

UTLB miss fault

TLB miss fault

TLB modification fault
Bus error exception
Address error exception
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SYSCALL System Call

Format:
SYSCALL
Description:

A system call trap occurs, immediately and unconditionally transferring control to
the exception handler.

Operation:

PC + ExceptionHandler

Exceptions:

System Call trap
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Probe TLB For Matching Entry TLBP

Format:

TLBP
Description:

The Index register is loaded with the address of the TLB entry whose contents match
the contents of the EntryHi and EntryLo registers. If no TLB entry matches, the
high—order bit of the Index register is set.

If more than one TLB entry matches, the results of this instruction are not specified.
Additionally, the operation of memory references associated with the instruction
immediately following a TLBP instruction is unspecified.

Operation:
T: Index «1 || 0%
for i in 0..TLBEntries-1
if (TLBga..44[i] = EntryHia1..12) and
(TLBg or (TLB4a..3s = EntryHij;. ¢ ))) then
Index. + 08 || j; | lo®
endif "
endfor
Exceptions:

Coprocessor unusable exception
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TLBR Read Indexed TLB Entry

ool 0

Format:
TLBR
Description:

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry
pointed at by the contents of the TLB Index register.

The operation is invalid (and the results are unspecified) if the contents of the TLB
Index register are greater than the number of TLB entries in the processor.

Operation:

T: EntryHi '—TLB[Indexw 8183 a2

EntryLo «TLB[Index 3 g la1..0

Exceptions:

Coprocessor unusable exception
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Write Indexed TLB Entry TLBWI

Format:

TLBWI
Description:

The TLB entry pointed at by the contents of the TLB Index register is loaded with
the contents of the EntryHi and EntryLo registers.

The operation is invalid (and the results are unspecified) if the contents of the TLB
Index register are greater than the number of TLB entries in the processor.

Operation:

T: TLB[Indexw'.a] P EntryHi

TLB[Index ,5 g ]3;..0 « EntrylLo

Exceptions:

Coprocessor unusable exception
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TLBWR Write Random TLB Entry

Format:

TLBWR
Description:

The TLB entry pointed at by the contents of the TLB Random register is loaded with
the contents of the EntryHi and EntryLo registers.

Operation:

T: TLB[Random +  EntryHi

13..8 ]63..32

TLB[Random + EntryLo

13..8 l 31..0

Exceptions:

Coprocessor unusable exception
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Exclusive Or XOR

seon] o [« | v [ o | xon|

Format:
XOR rd,rs,rt

Description:

The contents of general register rs are combined with the contents of general regis-
ter rt in a bit-wise logical exclusive OR operation. The result is placed into general
register rd.

Operation:

T: GPR[rd] + GPR[rs] xor GPR|rt]

Exceptions:

None.
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XORI Exclusive Or Immediate

Format:
XORI rt,rs,immediate
Description:

The 16-bit immediate is zero-extended and combined with the contents of general
register s in a bit-wise logical exclusive-OR operation. The result is placed into
general register rt.

Operation:

T: GPR[rt] —GPR[rs)a;...1¢ | (immediate xor GPR[rs]

15..0)

Exceptions:

None.
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R2000 Instruction Opcode Bit Encoding

28..26 Opcode
31..29 0 1 2 3 4 s 6 7
[sPECIAL] BCOND J JAL BEQ BNE BLEZ BGTZ
ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
COP0 | COP1 | coP2 COP3 T
T 7 T T T
LB LH LWL LW IBU | L
SB SH SWL SW [
LWCO LWC1 LWC2 LWC3 ik
swco | swci | swcz | swces +

2.0 L .- SPECIAL .
: ‘4 S: ‘6 7

SLL |+ SRL__ | SRA SLLV T SRLV | SRAV
IR JALR B i |syscaLL| BREAK | & % 1
MFHI | MTHI | MFLO | MTLO 4 B i Lo
MULT | MULTU| DIV DIVU [ 4 oo % +

ADDU SUB SUBU AND | oOR [ XxorR [ NOR

LWR
SWR

SCTE- SHILV. SH S N S R 1
Bl Bl B ool B3 B

c
B e % Y Y

U
w
[=]
-
»N
w

g R S Ol R LTS FEREFAEECS AR SRS il
i‘=»18..16'” G BCOND i ‘ R

: e | : Qg 4.0 5 B : 7
BLTZ BGEZ [ S B .

Eildievi Awmu o i
»
=]
]

i BLTZAL| BGEZAL |

2503 COPz.
222116 0y e A s e g
BCF
BCT

co

HER R A ’3’” o 1'4:._ Y 6 BHHEE HHAH
Teewr | [ TLBWR]

H .'Operatlon codes marked with a dagger cause reserved mstructxon excepnons and are reserved for
i ,fulure vers:ons of the archllecture H
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B
R2010 FPA
Instruction Set Details

This appendix provides a detailed description of the operation of each R2010 in-
struction. The instructions are listed alphabetically.

The exceptions that may occur due to the execution of each instruction are listed
after the description of each instruction. The description of the immediate causes
and manner of handling exceptions is omitted from the instruction descriptions in
this chapter. Refer to Chapter 8 for detailed descriptions of floating—point excep-
tions and handling.

Table B.4 at the end of this appendix lists the bit encoding for the constant fields of
each instruction.
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Instruction Formats

There are three basic instruction format types:

e I-Type, or Immediate instructions, which include Load and Store op-
erations,

M-Type, or Move instructions, and
R-Type, or Register instructions, which include the two- and three-
register Floating-Point operations.

The instruction description subsections that follow show how the three basic instruc-
tion formats are used by:

® Ioad and Store instructions,
® Move instructions, and
® Floating-Point Computational instructions.

A fourth instruction description subsection describes the special instruction format
used by:

e Floating-Point Branch instructions.

Instruction Notational Conventions

In this appendix, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown with lower-case names. The instruction name (such as
ADD, SUB, and so on) is shown in upper-case.

For the sake of clarity, an alias is sometimes substituted for a variable subfield in
the formats of specific instructions. For example, we use rs = base in the format for
Load and Store instructions. Such an alias is always lower case, since it refers to a
variable subfield.

In some instructions, however, the two instruction subfields op and function have
constant 6-bit values. When reference is made to these instructions, upper-case
mnemonics are used. In the floating-point instruction, for example, we use op =
COP1 and function = ADD. In some cases, a single field has both fixed and variable
subfields, so the name contains both upper and lower case characters. Actual bit
encoding for mnemonics is shown in Table B.5 at the end of this appendix.

In the instruction descriptions that follow, the Operation section describes the opera-
tion performed by each instruction using a high-level language notation. Special
symbols used in the notation are described in Table B.1.
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Table B.1 FPA Instruction Operation Notations

_Symbol | Meaning
— Assignment
I Bit string concatenation
xV .| Replication of bit value x into a y -bit string.
Note that xis always a single-bit value.
X Selection of bits y through z of bit string x Little-endian bit notation
y..z is always used. Ify is less thanz, this expression is an empty
(zero length) bit string.
+ Two's complement or floating—point addition
- Two’s complement or floating-point subtraction
* Two's complement or floating-point multiplication
div Two’s complement integer division
mod Two's complement modulo
< Two's complement less than comparison
and Bitwise logic AND
or Bitwise logic OR
xor Bitwise logic XOR
nor Bitwise logic NOR
R2000 General Register x. Note that the contents of GPR[0] are
GPR
] always zero: attempts to alter GPR[0] contents have no effect.

FGR[x] FPA General Registerx. as viewed by the R2000 processor.

FPR[ x] FPA Floating—Point register x. Each FPR is assembled from two FGRs.

FCR[x] FPA Control Register x.

T+ i Indicates the time steps (CPU cycles) between operations. Thus,
operations identified as occurring at T+1 are performed during the
c¥cle following the one where the instruction was initiated. This type
of operation occurs with loads, stores, jumps, branches and
coprocessor instructions.

virtualAddress | Virtual address
physicalAddresg Physical address
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Instruction Notation Examples

The following examples illustrate the application of some of the instruction notation
conventions:

Example #1:
_ GPR[t] « |mmed|ate I o 16

Sixteen zero bits are concatenated wnth an |mmed|ate value

(typically 16 bits), and the 32- blt stnng (with the lower 16 bits
set to zero) is assigned to GPR fi

Example #2:
‘ (1mmedxate )16 Il ummedlate1 .

’Blt 15 (the sngn blt) of an immediate value is extended for 16 blt
positions, and the result is concatenated with bits 15 through 0 of
the immediate value to form a 32-bit sign-extended value.

Load and Store Instructions

All loads operations have a latency of one instruction. That is, the instruction imme-
diately following a load cannot use the contents of the register which will be loaded
with the data being fetched from storage.

In the load/store operation descriptions , the functions listed in Table B.2 are used to
summarize the handling of virtual addresses and physical memory.
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Function | Description Sanmm
Addr Uses the TLB to find the physical address given the virtual
Translation address. The function fails and an exception is taken if the

entry for the page containing the virtual address is not
present in the TLB (Translation Lookaside Buffer).

Load Memory | Uses the cache and main memory to find the contents of the
word containing the specified physical address. The low-order
two bits of the address and the access type field indicate
which of each of the four bytes within the data word need to
be returned. If the cache is enabled for this access, the
entire word is returned and loaded into the cache.

Store Memory| Uses the cache, write buffer, and main memory to store the
word or part of word specified as data into the word con-
taining the specified physical address. The low-order two -bits
of the address and the access type field indicate which of the
four bytes within the data word should be stored.

Table B.2 Load/Store Common Functions
Load and Store Instruction Format

Figure B.1 shows the I-Type instruction format used by load and store operations.

I-Type (Immediate)

where:
op is a 6-bit operation code
base is the 5-bit R2000 base register specifier
ft is a 5-bit source (for stores) or destination (for loads)

FPA register.

offset  is the 16-bit signed immediate offset

Figure B.1 Load and Store Instruction Format

All coprocessor loads and stores reference aligned full word data items. Thus, the
access type field is always WORD, and the low-order two bits of the address must
always be zero. The address specifies the smallest byte address of each byte in the
address field.
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Computational Instructions

Computational instructions include all of the arithmetic floating—point operations
performed by the FPA.

Figure B.2 shows the R-Type instruction format used for computational operations.

R-Type (Register)

where:

COPI  is a 6-bit major operation code
format is a 4-bit format specifier

5 is a 5-bit sourcel register
ft is a 5-bit source2 register
fd is a 5-bit destination register

Junction is a 6-bit function field

Figure B.2 Computational Instruction Format

The four format code bits of a floating—point instruction specify which operand for-
mat is used in the instruction. Decoding for this field is shown in Table B.3.

- Code | Mnemonic | Size | Format = =
0 S single binary floating-point
1 D double binary floating—point
2-3 - - reserved
4 w single binary fixed-point
5-15 - - reserved

Table B.3 Format Field Decoding

The six low-order function bits of coprocessor instruction indicate which floating-
point operation is to be performed. Table B.4 lists all floating-point instructions.
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Instruction Set Details

Table B.4 Floating—Point Instructions and Operations

- Code || Mnemonic | : . Operation =
0 ADD.fmt Add
1 SUB.fmt Subtract
2 MUL.fmt Multiply
3 DIV.fmt Divide
4 - reserved
5 ABS.fmt Absolute value
6 MOV.fmt Move
7 NEG.fmt Negate
8-31 - reserved
32 CVT.S.fmt Convert to single floating—point
33 CVT.D.fmt Convert to double floating-point
34-35 - reserved
36 CVT.W.fmt Convert to binary fixed-point
37-47 - reserved
48-63 C.fmt Floating—point compare

In the following pages, the notation FGR refers to the FPA’s general registers 0
through 31, and FPR refers to the FPA’s floating—point registers (FPR 0 through 30)
which are formed by concatenation of FGR’s (as described in Chapter 6).

The following routines are used in the description of the floating-point operations to
get the value of an FPR or to change the value of an FGR: NOTE: When the format
is single-precision or integer, the odd register of the destinations is undefined.

value « ValueFPR(fp, fmt):
case fmt of
S: value + FGR[fpr]

D: value « FGRIfpr + 1] || FGRIfpr]
W: value « FGRIfpr]
end
StoreFPR (fpr, fmt, value):
case fmt of
S: FGRIfpr + 1] + undefined
FGR[fpr] +« value
D: FGR[fpr + 1] « value & 4
FGR[fpr] « value 5, ,
W: FGR[fpr] « value
FGRI[fpr + 1] « undefined

end
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ABS.fimt Floating-Point Absolute Value

Format:

ABS.fmt fd,fs
Description:

The contents of the FPA register specified by fs are interpreted in the specified
format and the arithmetic absolute value is taken. The result is placed in the float-
ing-point register specified by fd.

The absolute value is always exact.

On the FPA, this operation is valid only for single- and double-precision floating—
point formats. This operation is not defined if bit 0 of any register specification is
set, as the register numbers specify an even-odd pair of adjacent coprocessor gen-
eral registers (FGR).

Operation:

T: StoreFPR (fd, fmt, AbsoluteValue(ValueFPR (fs,fmt)));

Exceptions:

Coprocessor unusable exception
Coprocessor Exception Trap

Floating-Point Exceptions:

Unimplemented Operation Exception
Invalid Operation Exception
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Floating-Point Add ADD.fmt

Format:

ADD.fmt fd,fs,ft
Description:

The contents of the FPA registers specified by fs and ft are interpreted in the speci-
fied format and arithmetically added. The result is rounded as if calculated to
infinite precision and then rounded to the specified format (fimt), according to the
current rounding mode. The result is placed in the floating-point register (FPR)
specified by fd.

This instruction is valid on the FPA only for single- and double-precision floating—
point format. This operation is not defined if bit 0 of any register specification is
set, as the register numbers specify an even-odd pair of adjacent FPA general regis-
ters (FGR).

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) + ValueFPR (ft, fmt));

Exceptions:

Coprocessor unusable exception
Coprocessor Exception Trap

Floating-Point Exceptions:

Unimplemented Operation Exception
Invalid Operation Exception

Inexact Exception

Overflow Exception

Underflow Exception
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BCIF Branch On FPA False
(coprocessor 1)

Format:

BCI1F offset
Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 32
bits. If the FPA’s condition signal (FpCond) to the R2000 Processor is false, the
prgoram branches to the target address, with a delay of one instruction.

Operation:
T target + (offset 5) ™ || offset | 02
condition + not CpCond[1]
T+1: if condition then
PC + PC + target
endif
Exceptions:

Coprocessor unusable exception
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Branch On FPA True BCIT
(coprocessor 1)

Format:
BCIT offset
Description:

A branch target address is computed from the sum of the address of the instruction
in the delay slot and the 16-bit offset, shifted left two bits and sign-extended to 32
bits. If the FPA’s condition signal (FpCond) to the R2000 Processor is true, the
prgoram branches to the target address, with a delay of one instruction.

Operation:
T: target + (offset 45) ** || offset || 02
condition + CpCond[1]
T+1: if condition then
PC + PC + target
endif
Exceptions:

Coprocessor unusable exception
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C.cond.fmt Floating-Point Compare

Format:
C.cond.fmt fs,ft
Description:

The contents of the FPA registers specified by fs and ft are interpreted in the speci-
fied source format and arithmetically compared. A result is determined based on
the comparison and the conditions specified in the instruction. If one of the values
is a NaN, and the low-order bit of the condition is set, an invalid operation trap is
taken. After a one-instruction delay, the condition is available for testing with
“branch on FPA coprocessor condition” instructions.

Comparisons are exact and neither overflow nor underflow. Four mutually exclu-
sive relations are possible results: less than, equal, greater than, and unordered. The
last case arises when one or both of the operands are NaN; every NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so
+0 = -0.

On the FPA, this operation is valid only for double- or single-precision floating-
point formats. This operation is not defined if bit 0 of any register specification is
set, as the register numbers specify an even-odd pair of adjacent coprocessor gen-
eral registers (FGR).
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Floating-Point Compare

(continued) C.Cond.fmt

Operation:

T: if NaN(ValueFPR(fs, fmt)) or NaN(ValueFPR(ft, fmt)) then
less +— false

equal + false
unordered + true
if cond; then
signal InvalidOperationException
endif
else
less + ValueFPR(fs,rmt) < ValueFPR(ft,rmt)

equal + ValueFPR(fs,rmt) = ValueFPR(ft,rmt)
unordered + false
endif

T+1: condition + (cond , and less) or
(cond, and equal) or
(cond, and unordered)

Exceptions:

Coprocessor unusable exception
Coprocessor Exception Trap

Floating-Point Exceptions:

Unimplemented Operation Exception
Invalid Operation Exception
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CFC]_ Move Control word from FPA
(coprocessor 1)

Format:
CFC1 rt fs

Description:

The contents of the FPA’s control register fs are loaded into R2000 Processor’s
general register rt.

Operation:

T: temp « FCR[fs];

T+ 1: GPR[rt] + temp;

Exceptions:

Coprocessor unusable exception
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Move Control word to FPA CTCI
(coprocessor 1)

Format:
CTC1 rtfs
Description:

The contents of R2000 Processor’s general register rt are loaded into the FPA’s
control (FCR) register fs.

Operation:

T: temp « GPR[rt];
T + 1. FCR[fs] + temp

Exceptions:

Coprocessor unusable exception
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CVT.D.fmt Floating-Point Convert to Double
Floating-Point Format

Format:
CVT.D.fmt fd,fs
Description:

The contents of the FPA register specified by fs are interpreted in the specified
source format and arithmetically converted to the double binary floating—point for-
mat. The result is placed in the FPA register specified by fd.

Rounding occurs according to the currently specified rounding mode.

On the FPA, this operation is valid only for conversion from a single fixed-point or
‘floating-point format. This operation is not defined if bit 0 of any register specifica-
tion is set, as the register numbers specify an even-odd pair of adjacent coprocessor
general registers (FGR).

Operation:

T: StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:

Coprocessor unusable exception
Coprocessor Exception Trap

Floating-Point Exceptions:

Unimplemented Operation Exception
Invalid Operation Exception

B-16 R2000 Architecture



R2010 FPA
Instruction Set Details

Floating-Point Convert to Single CVT.S.fmt
Floating-Point Format

Format:

CVT.S.fmt fd,fs
Description:

The contents of the FPA register specified by f5 are interpreted in the specified
source format and arithmetically converted to the single binary floating—point for-
mat. The result is placed in the FPA register specified by fd.

Rounding occurs according to the currently specified rounding mode.

On the FPA, this operation is valid only for conversion from double-precision float-
ing-point or fixed-point formats. This operation is not defined if bit 0 of any
register specification is set, as the register numbers specify an even-odd pair of
adjacent coprocessor general registers (FGR).

Operation:

T: StoreFPR (fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:

Coprocessor unusable exception
Coprocessor Exception Trap

Floating-Point Exceptions:

Unimplemented Operation Exception
Invalid Operation Exception
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CVT.W.fmt Floating-Point Convert to

Fixed-Point Format

oo im0 ] v [ | omn

Format:

CVT.W.fmt fd,fs
Description:

The contents of the FPA register specified by fs are interpreted in the specified
source format and arithmetically converted to the single fixed-point format. The
result is placed in the FPA register specified by fd.

On the FPA, this operation is valid only for conversion from single- or double—pre-
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defined if bit 0 of any register specification is set, as the register numbers specify an
even-odd pair of adjacent coprocessor general registers (FGR).

Operation:

T: StoreFPR (fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception
Coprocessor Exception Trap

Floating-Point Exceptions:

Unimplemented Operation Exception
Invalid Operation Exception
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Floating-Point Divide DIV.fmt

Format:
DIV.fmt fd,fs,ft
Description:

The contents of the FPA registers specified by fs and ft are interpreted in the speci-
fied format and arithmetically divided. The result is rounded as if calculated to
infinite precision and then rounded to the specified format (fmt), according to the
current rounding mode. The result is placed in the floating-point register (FPR)
specified by fd.

This instruction is valid on the FPA only for single- and double-precision floating—
point format. This operation is not defined if bit 0 of any register specification is

set, as the register numbers specify an even-odd pair of adjacent FPA general regis-
ters (FGR).

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR (ft, fmt));

Exceptions:

Coprocessor unusable exception

A ns oo [HPAPPRS. Pipu

Floating-Point Exceptions:
Unimplemented Operation Exception  Invalid Operation Exception

Inexact Exception Overflow Exception
Divide by Zero Exception
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LWC1 Load Word to FPA

(coprocessor 1)

Format:
LWCT1 ft,offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of the R2000 Proces-
sor’s general register base to form a 32-bit unsigned effective address. The contents
of the word at the effective address memory location is loaded into the FPA’s gen-
eral register (FGR) at location ft.

If either of the two least significant bits of the effective address is non-zero, an
address error exception occurs.

Operation:

T: virtualAddress — (offset 5 ) '®| offset s , + GPR[base];

physicalAddress + AddressTranslation (virtualAddress);
mem+ LoadMemory (WORD, physicalAddress);
byte « virtualAddress:..o ;

T+1: FGR[ft] + mem

Exceptions:

Coprocessor unusable exception
Bus error exception
Address error exception
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Move From FPA MFC1

(coprocessor 1)

Format:
MFC1 rt,fs
Description:

The contents of the FPA general register at location fs are loaded into R2000 Proces-
sor’s general register rt.

Operation:

T: temp+ FGR[fs];
T+1: GPR[rt] «—temp

Exceptions:

Coprocessor unusable exception
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MOV.fmt Floating-Point Move

Format:
MOV.fmt fd,fs
Description:

The contents of the FPA register specified by f5 are interpreted in the specified
format and are copied into the FPA register specified by fd.

The Move operation is always exact.

On the FPA, this operation is valid only for single- and double-precision floating-
point formats. This operation is not defined if bit 0 of any register specification is
set, as the register numbers specify an even-odd pair of adjacent coprocessor gen-
eral registers (FGR).

Operation:

T: StoreFPR (fd, fmt, ValueFPR (fs, fmt));

Exceptions:

Coprocessor unusable exception
Coprocessor Exception Trap

Floating-Point Exceptions:

Unimplemented Operation Exception
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Move To FPA MTCI

(coprocessor 1)

Format:
MTC1 rt,fs
Description:

The contents of R2000 Processor’s general register rt are loaded into the FPA’s
general register at location f5.

Operation:

T: temp « GPR[rt];
T+1: FGRI[fs]+ data;

Exceptions:

Coprocessor unusable exception
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MUL.fmt Floating-Point Multiply

Format:

MUL.fmt fd,fs,ft
Description:

The contents of the FPA registers specified by f5 and ft are interpreted in the speci-
fied format and arithmetically multiplied. The result is rounded as if calculated to
infinite precision and then rounded to the specified format (fmt), according to the
current rounding mode. The result is placed in the floating-point register (FPR)
specified by fd.

Prproe. e ele 2em o ot Vbl o

This instruction is valid on the FPA umy for Singie— a d dot blé-}‘)i‘ﬁumuu 1oating-
point format. This operation is not defined if bit 0 of any register specification is
set, as the register numbers specify an even-odd pair of adjacent FPA general regis-
ters (FGR).

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) * ValueFPR (ft, fmt));

Exceptions:

Coprocessor unusable exception
Coprocessor Exception Trap

Floating-Point Exceptions:

Unimplemented Operation Exception
Invalid Operation Exception

Inexact Exception

Overflow Exception

Underflow Exception
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Floating-Point Negate NEG.fmt

Format:

NEG.fmt fd,fs
Description:

The contents of the FPA register specified by fs are interpreted in the specified
format and the arithmetic negation is taken (the polarity of the sign-bit is changed).
The result is placed in the FPA register specified by fd. If the register contains a
signaling NaN, an invalid Operation Exception is generated.

The negated value is always exact.

On the FPA, this operation is valid only for single- and double-precision floating—
point formats. This operation is not defined if bit 0 of any register specification is
set, as the register numbers specify an even-odd pair of adjacent coprocessor gen-
eral registers (FGR).

Operation:

T: StoreFPR (fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor unusable exception
Coprocessor Exception Trap

Floating-Point Exceptions:

Unimplemented Operation Exception
Invalid Operation Exception
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SUB.fmt Floating-Point Subtract

Format:

SUB.fmt fd,fs,ft
Description:

The contents of the FPA registers specified by fs and ft are interpreted in the speci-
fied format and arithmetically subtracted. The result is rounded as if calculated to
infinite precision and then rounded to the specified format (fmt), according to the
current rounding mode. The result is placed in the floating-point register (FPR)
specified by fd.

This instruction is valid on the FPA only for single- and double-precision floating-

point format. This operation is not defined if bit 0 of any register specification is

set, as the register numbers specify an even-odd pair of adjacent FPA general regis-
ters (FGR).

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) - ValueFPR (ft, fmt));

Exceptions:

Coprocessor unusable exception
Coprocessor Exception Trap

Floating-Point Exceptions:

Unimplemented Operation Exception
Invalid Operation Exception

Inexact Exception

Overflow Exception

Underflow Exception

B-26 R2000 Architecture



R2010 FPA
Instruction Set Details

Store Word from FPA SWCI
(coprocessor 1)

Format:
SWC1 ft,offset(base)
Description:

The 16-bit offset is sign-extended and added to the contents of the R2000 Proces-
sor’s general register base to form a 32-bit unsigned effective address. The contents
of the FPA’s general register (FGR) at location ft is stored at the memory location
specified by the effective address.

If either of the two least significant bits of the effective address is non-zero, an
address error exception occurs.

Operation:

T:  virtualAddress + (offset 5 ) '°|| offset ,s , + GPR[base]
physicalAddress +— AddressTranslation (virtualAddress);
data + FGR(ft]

T+1: StoreMemory (WORD, data, physicalAddress)

Exceptions:

Coprocessor unusable exception
Bus error exception
Address error exception
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R2010 FPA Instruction Opcode Bit Encoding

28..26 Opcode
31,29 .0 1 2 3 4 5 6 7
0 e
2 CoP1
4 :
4
s
6 LWC1
7 SWC1
23..21 fmt
24 0 1 2 3 4 5 6 7
6 Single | Double + i + + +
i7 + 1 T + T + 1
2503 ‘COoP1
22,16 g 1 i2 3 4 5 6 7
0,0 BCF
v 01 MF MT BCT co
.htﬁ
1.1 CF CT
Liiagt v ‘function
D53l i 2 3 5 6 7
0 [ADD.fmt | SUB.fmt | MUL.fmt| DIV.fmt T ABS.fmt | MOV.fmt | NEG.fmt
1 ki + T T i T ¥ T
2 + + i il + i i T
3 T T ¥ ¥ i ¥ ¥ +
4 [cvrs | cvrp 1 1 CVT.W 1 1 1
st t T t t t t t
6 C.F C.UN C.EQ C.UEQ | C.OLT C.ULT | C.OLE C.ULE
7 C.SF C.NGLE| C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
: 1‘ Operauon codes marked with a dagger cause ummplememed operauon excepuons and are
; reserved for future ‘versions of the architecture’
e Refex_' ‘10 Appendlx Aifora comp]e(e hstmg of the instruction set bit encoding.

Table B.5 Bit Encoding for R2010 FPA Instructions
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The RISC architecture implemented by the R2000 Processor provides an efficient,
uniform, and streamlined instruction set to obtain maximum efficiency for the most
commonly performed operations. As a result, some operations that would require
single, multi-cycle instructions in more traditional architectures require multiple,
single-cycle R2000 instructions.

The R2000 architecture also provides no condition code register containing status
bits such as Carry and Overflow. Instead, the conditions generated by the Set in-
structions (slt, sltu) are loaded directly into a general-purpose register. This ap-
proach greatiy simpiifies handiing of the instruction pipeiine and eases many com-
piler tasks but does require that programs explicitly check for conditions such as
overflow and carry.

This appendix describes techniques that can be used to implement the following
operations:

® Handling 32-bit addresses or constants
® Implementing indexed addressing
e Using the Jump Register (jr) instruction for subroutine returns
® Jumping to 32-bit addresses
® Branching on arithmetic comparisons
e Filling the branch delay slot
® Testing for overflow
® Testing for carry
® Performing multi-precision math
Note that the MIPS assembly language supports many of these functions (such as

loading 32-bit addresses and branching on arithmetic comparisons) that are not
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directly implemented by the R2000 machine language. It does this using techniques
similar to those described in this appendix. Refer to Appendix D for an overview of
the MIPS assembly language.

In many of the following examples, a temporary register is used to hold intermediate
results. In the following description, $at is used to represent that temporary regis-
ter, and it is assumed that the register is reserved for just this purpose and therefore
doesn’t conflict with anything else.

32-bit Addresses or Constants

The R2000 does not provide specific “load address” or “load immediate” instruc-
tions. (Note: the MIPS assembly language does provide load address (la) and load
immediate (li) instructions that are implemented using multiple machine language
instructions. To load an address with relocatable code, you must use the assembler’s
la instruction.) Use the following two-instruction sequence to load any 32-bit pat-
tern into a register:

1ui $destination, <upper 16 bits>
ori $destination, <lower 16 bits>

There are three special cases which require only one instruction to obtain the de-
sired 32-bit pattern:

e Constants with the upper 16 bits set to zero. Use the ori instruction,
which zero-extends the immediate field:

ori $destination,$0,<lower 16 bits>

® Constants with the upper 17 bits set to one. Use the low-order 16
bits of the constant in the addi instruction, which sign-extends the
immediate field:

addi $destination,$0,<lower 16 bits>

® Constants with the lower 16 bits set to zero. Use the high-order 16
bits of the constant in the lui instruction, which shifts its immediate
field left by 16 bits, bringing in zeroes on the right:

lui $destination,<upper 16 bits>
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Indexed Addressing

The R2000 provides only one addressing mode. This addressing mode sign-extends
a 16-bit offset, adds it to the contents of a base register, and loads the destination
(or stores the source) from (to) that memory address. The format for the load word
(Iw) instruction is shown below:

1w $v‘desti'nation, <16-bit offset>($baseregister)

(The following examples use the Iw instruction to illustrate various addressing
modes; the examples are, however, equally valid for other load and store instruc-
tions.)

More general addressing modes can be simulated by using additional instructions.
For example, if the offset exceeds 16 bits, you can use lui and addiu to add the
upper 16 bits to the base register, and you can put the lower 16 bits into the offset
field of the lw instruction. Thus, you can implement:

1w $'dest'ination ,<382-bit offset>($baseregister)

with:

1lui  $at,<upper 18 bits adjusted>
‘addu $at,$at,$baseregister
lw $destination,<lower 16 bits>($at)

Why the term adjusted? Because the lw instruction sign-extends the lower 16 bits,
you must add 1 to the upper 16 bits if the lower 16 bits appears to be a negative
number—-if, in other words, a logical AND between the 32-bit constant and 0x8000
is non-zero. For example:

32-bit constant upper 16 bits adjusted lower 16 bits
0x04004000 0x0400 0x4000
0x04008000 0x0401 0x8000

The absence of a basz register permits an even simpler instruction sequence, but
still requires you to adjust the upper 16 bits. Thus, you can implement:

1w $destination,<32-bit address>
with:
lui $at,<upper 16 bits adjusted>
dw $destination,<lower 16 bits>($at)
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Subroutine Return Using Jump Register Instruction

The subroutine call instructions, jal and jalr, put the return address into register
$31. To return from a subroutine, use jr $31. If one subroutine needs to call yet
another subroutine, the calling subroutine must save the value of $31 (on the stack,
for example) before making the call, and restore the value of $31 upon return.

Jumping to 32-bit Addresses

The j and jal instructions, which contain an immediate field, can actually jump only
within a 228-bit segment, because the instructions obtain the high-order four bits
from the current program counter. To jump to an arbitrary 32-bit address, you
must load the desired address into a temporary register (using the “load address”
technique described earlier) and then use the jump register (jr) instruction:

la $at, foo
jr $at :

Branching On Arithmetic Comparisons

The R2000 provides a complete set of arithmetic comparisons against zero. (There
are no instructions for beqz or bnez, but you can obtain the same effect by using
register $0, which always contains a value of zero, in the beq and bne instructions).
However, the only instructions for comparing a pair of registers are beq and bne. To
perform any other arithmetic comparison on a pair of registers or between a register
and an immediate value, you must use a sequence of two instructions as listed in
Table C.1 or C.2.

Desired Instruction Equivalent Sequence

beq $a,$b,dest beq $a,$b,dest

bne $a,$b,dest bne $a,$b,dest

blt $a,$b,dest slt $at,$a,$b; bne $at,$0,dest

ble $a,$b,dest slt sat.$b,8$a; beqg $at,$0,dest

bgt $a,$b,dest slt sat,$b,$a; bne $at,$0,dest

bge $a,$b,dest slt $at,$a,$b; beq $at,$0,dest

bltu $a,$b,dest sltu $at,$a,$b; bne $at,$0,dest
bleq $a,$b,dest sltu $at,$b,$a; beq $at,$0,dest
bgtu $a,$b,dest sltu $at,$b,$a; bne $at,$0,dest
bgeu $a,$b,dest sltu $at,$a,$b; beq $at,$0,dest

Table C.1 Arithmetic Comparisons on Register Pairs
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Desired Instruction | = Equivalent Sequence
beq $a,i,dest 1i $at,i; beg $a,sat,dest
bne $a,i,dest 1i $at,i; bne $a,$at,dest
blt $a,i,dest slti $at,$a,i; bne $at,$0,dest
ble $a,i,dest slti $at,$a,i+l; bne $at,$0,dest
bgt $a,i,dest slti $at,$a,i+l; beq $at,$0,dest
bge $a,i,dest slti $at,$a,i; beq $at,$0,dest

Table C.2 Arithmetic Comparisons with Immediate Values

Note that the MIPS assembly language supports all of the branch instructions listed
in the Tables C.1 and C.2 by performing the equivalent two-instruction sequence.
Refer to the Assembly Language Programmer’s Guide for a description of these branch
instructions.

Filling the Branch Delay Slot

You can sometimes save instructions by exploiting the knowledge that the instruc-
tion in the delay slot of a conditional branch will execute immediately after the
comparison, regardless of whether the branch is taken. For example, compare a
straightforward implementation of “$6 = maximum($5,$4)” with a tricky one. The
straightforward implementation takes seven instructions if you count the “nop”s
which the assembler will insert to fill the branch delay slots:

slt sat,$5,84 :

beq:$at,$0,1f # if $5 >= $4 ..

# nop (inserted by assembler: to flll delay slot)

.gddu $6,54,80 # else move $4 to $ i
2 H

. # nop (inserted by assembler to fill delay slot) d

1: addu $6 $5,80 # then move $5 to $6 G

A tricky version takes only four instructions. Observe that it's harmless to use the
delay slot to move one value into $6 while the conditional branch is being evaluated,
and then—-if the branch is not taken--override that by moving the other value into
$6 instead. To put an instruction into the delay slot yourself, you must temporarily
set the assembler to “no-reorder” mode, so that it will not fill the delay slot with a
“nop” for you:
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.set noreorder
slt $at;$5,84
beq $at,$0,1f  # if $5 >=184 ..
addui$6,;$5,80: # move $5 to $6 whlle evaluating "beq"
addu $6,84,80 @ # if branch not: taken, move $4 to $6 1nstead
1:
.set reorder

To implement “minimum” instead of “maximum”, just swap $5 and $4 in the “slt”
instruction.

A similar trick works for “$6 = abs($5)”'

/set noreorder
: bgtz $5,1f # if $5 > i
“'addu $6,$5,80 # move $5 to $6 while evaluat1ng "bgt"
subu: $6, 80, $6 # if branch not taken, negate $6
1: :
“oset reorder

Notice that the following sequence, which appears equivalent, is not entirely fool-
proof, because it would fail if the destination register were the same as the source—-
such as “$5 = abs($5)”:

:¢’=;set,noreorder : :
b1tz $5,1f # it $5 ESH o
isubu $6,$0,85 . # negate $5: into $6 whxle evaluatxng "blt" i
i addu $6.§5.$o # if branchinotitaken, move $5 to $6' instead
i : # (but ifi$5 and $6 were the same, the '
G register would already have been negated)

l,set reorder

Testing for Carry

The R2000 does not provide a status bit to indicate whether an arithmetic operation
resulted in a carry. Therefore, routines that require detection of a carry (or borrow)
resulting from an addition (or subtraction) must explicitly test for their occurrence.
This section provides examples of performing add-with-carry and subtract-with-
borrow operations.

To perform an add-with-carry, a routine must first explicitly calculate whether the
addition will result in a carry and record the occurrence of a carry in a register.
When doing multi-word additions, a test is made to see if there is a carry in, and
then two different code sequences are used to add the words: one sequence for
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adding with a carry in and one sequence for adding without a carry in. Both se-
quences can calculate the carry out.

For example, the following sequence calculates whether the addition of A and B
with no carry in will result m a carry out:

# carryou

sltuv carryout ntemp B

If there is a carry in, the following sequence can be used to calculate whether the
addition of A and B will result in a carry out:

# carryout from A+ B + 1

not temp,A

sltu carryout B, temp
xor carryout,l

The technique for performing subtract-with-borrow is quite similar. Again, two
sequences are used to calculate whether a subtraction will result in a borrow; one
sequence for the case where there is no borrow in:

# borrow out from A - B
sltu borrow A.B : ,

And a second routine for the case where there is a borrow in:
# borrow out from A - B - 1
sltu borrow B, A
xor borrow 1
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Testing for Overflow

The R2000 does not provide a status bit to indicate whether an arithmetic operation
resulted in an overflow. The signed addition and subtraction instructions (ADD and
SUB) trap if an overflow occurs and thus implement overflow detection at no cost.
However, if it is necessary to detect signed overflow without using traps or to detect
overflow for unsigned operations, the techniques described in this section can be
used.

Figure C.1 provides examples of code that checks for overflow for various arithme-
tic operations. These examples are based on the following simple rules for signed
overflow:

e During addition, overflow occurs if the signs of the addends are the
same and the sign of the sum is different.

e During subtraction, overflow occurs if the signs of the operands are
different and the sign of the resultant difference is not the same as the
sign of the minuend.
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/* compute t0 = t1 + t2, branch to L on signed overflow */
addu to, t1, t2 /* compute sum */

xor t3, t1, t2 /* if operands have different signs */
bltz t3, 1f /* then overflow not possible */
/* t1 and t2 have same sign */
Xor t3, to, t1 /* if sum does not also have the same sign */
bltz t3, L /* then addition overflowed */
/* nop */
1

/* compute t0 = t1 - t2, branch to L on signed overflow */
subu tO, t1, t2 /* compute difference */

xor t3, t1, t2 /* if operands have same signs */

bgez t3, 1f /* then overflow not possible */

/* t1 and t2 have different signs */

Xor t3, to, t1 /* if difference does not also have */
/* the same sign as the minuend */

bltz t3, L /* then subtraction overflowed */

/* nop */

/* compute tO = t1 + t2 , branch to L on unsigned overflow */
addu tO, t1, t2

not t3, t1

sltu t3, t3, t2
bne t3, O, L

/* compute tO = tl1 - t2, branch to L on unsigned overflow */
subu tO, ti1, t2
sltu t3, t1, t2
bne t3, O, L

/* compute tO tl * t2, branch to L on signed overflow */
mult t1, t2
mflo tO
mfhi t3

t4, to, 31

‘ /* compute tO
multu t1, t2

tl * t2, branch to L on unsigned overflow */

mflo tO
mfhi t3
bne t3, O, L /* if HI # 0 ,then multiplication overflowed */

Figure C.1 Calculating Overflow for Arithmetic Operations
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Multi-precision Math

Figure C.2 lists examples of routines that perform double-word addition, subtrac-
tion, and multiplication. Figure C.3 lists an example of a routine that multiplies two
64-bit values to obtain a 128-bit result.

#include <regdef.h>

/* Little-endian assignment of 64-bit integers to registers used.

*/

/% V1:VO = A1:A0 + A3:A2 */
/* 4 instructions/cycles */
addu vO, a0, a2 /* add LSWs */
sltu vl, vO, a0 /* set carry-in bit if add of LSWs wraps */
addu v1, al /* add in one MSW */
addu vl1, a3 /*¥ add in other MSW */
* use add instead of addu for last two adds if overflow trapping desired */

/* V1:VO = A1:A0 - A3:A2 */
/* 4 instructions/cycles */
sltu t0, a0, a2
subu vO, a0, a2
subu v1, al, a3
subu vl, toO

V1:VO = A1:AQ0 * A3:A2 */

12 instructions, 42 cycles */

/* Note that 32-bits * 64-bits is simpler (e.g. multiply by
small compile-time constant). */
multu a0, a2
/* 10 cycle interlock */
mflo vO
mfhi vl
/* 2 nops */
multu al, a2
/* 10 cycle interlock */
mflo
addu vl, toO
/* 1 nop */
multu a0, a3
/* 10 cycle interlock */
mflo to
addu v1, tO
Figure C.2 Examples of Double-Word Math Routines
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multu t4, t6 # x0 * yo
t# 11 cycle interlock
mflo to # lo(x0 * y0)
mfhi t1 # hi(x0 * y0)
not a3, t1
t# 1 nop
multu t5, té6 # x1 * yO
t# 11 cycle interlock
mflo a2 # lo(x1l * y0)
mfhi t2 # hi(x1 * yO0)
sltu a3, a3, a2 # carry(hi(x0 * y0) + lo(x1l * y0))
addu tl, a2 # hi(x0 * y0) + lo(xl * yO0)
multu t4, t7 # x0 * yl
add t2, a3 # hi(x1 * y0) + carry
not a3, tl .
t# 9 cycle interlock
mflo a2 # lo(x0 * yl)
mfhi t3 # hi(x0 * yl)
sltu a3, a3, a2 # carry((hi(x0 * y0) + lo(xl * y0)) + lo(x0 * yl))
addu tl, a2 # hi(x0 * y0) + lo(x1l * y0) + lo(x0 * yl)
multu t5, t7 # x1 * yl
add t2, a3 # hi(x1 * y0O) + carry + carry
not a2, t2
sltu a2, a2, t3 # carry(hi(xl * y0) + hi(x0 * yl))
addu t2, t3 # hi(x1 * y0) + hi(x0 * yl))
not a3, t2
‘# 6 cycle interlock
mfhi # hi(x1l * yl)
add t3, a2 # hi(x1 * yl) + carry(hi(x1l * y0) + hi(x0 * yl))
mflo a2 # lo(x1l * yl)
sltu a3, a3, a2 # carry((hi(xl * y0) + hi(x0 * y1)) + lo(x1l * yl))
add t3, a3
addu t2, a2 # hi(x1 * yO) + hi(x0 * yl) + lo(x1l * yl)
Figure C.3 Example of 64-bit Multiplication Routine
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Double-Word Shifts

Figure C.4 illustrates examples of routines performing double word shift operations
where the shift count is determined by the contents of A2.

/* These routings can be signifi.cantly simplified if the

/* V1:VO0 Al:A0 << (A2 mod 64) */

sll to, a2, 32-6
bgez to, 1f

sll vl, a0, a2
1i v0o, O

b

1: sll vl, al, a2
beq to, 0, 2f

/* V1:V0 Al:A0 >> (A2 mod 64) */

sll t0, a2, 32-6
bgez to, 1f

srl vO, al, a2
1i vli, O

1: srl vO, a0, a2
beq to, 0, 2f
negu tl, a2
sll t2, al, t1
or vOo, t2

2: srl vl, al, a2

h

/* Al:A0 >> (A

sll to, a2, 32-6
bgez tO, 1f
sra vO, al, a2
sra vl, al, 31
b 3f

1: srl v0, a0, a2
beq to, 0, 2f
negu tl, a2
sll t2, al, tl1
or vO, t2

2: sra vl, al, a2

Figure C.4. Examples of Double-Word Shift Routines
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Assembly Language Programming

This appendix provides an overview of the assembly language supported by the
MIPS compiler system. The assembler converts assembly language statements into
machine code. In most assembly languages, each instruction corresponds to a single
machine instruction; however, some MIPS assembly language instructions can gener-
ate several R2000 machine instructions. This approach provides a more regular
assembler that generates optimized code for certain short sequences and also results
in assembly programs that can run without modification on future machines, which
might have extended machine instructions. See Basic Machine Definition at the end
of this appendix for more information about assembler instructions that generate
multiple machine instructions.

Register Use and Linkage

This section describes the naming and usage conventions that the assembler applies
to the R2000 and R2010 registers.

General Registers

The R2000 Processor has thirty-two 32-bit integer registers. Table D.1 summarizes
the assembler’s usage conventions and restrictions for these registers. The assem-
bler reserves all register names, and you must use lowercase for the names. All
register names start with a dollar sign (8).

The general registers have the names $0..$31. By including the file regdef.h (use
#include <regdef.h>) in your program, you can use software names for some general
registers. The operating system and the assembler use the general registers $1, $26,
$27, $28, and $29 for specific purposes. (NOTE: Attempts to use these general
registers in other ways can produce unexpected results.) If a program uses the
names $1, $26, $27, $28, $29 rather than the names $at, $kt0, $ktl1, $gp, $sp re-
spectively, the assembler issues warning messages.
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‘software name

register name| (from regdef.h) | _ use and linkage
$0 always has the value 0
$at or $1 reserved for the assembler
$2..83 v0-v1 used for expression evaluations and to

hold integer function results.
Also used to pass the static link when
calling nested procedures.

$4..87 a0-a3 used to pass the first 4 words of integer

type actual arguments; their values are
not preserved across procedure calls

$8..815 t0-t7 temporary registers, used for expression
evaluations; their values are not preserved
across procedure calls.

$16..923 s0-s7 saved registers; their values must be
preserved across procedure calls.

$24..825 t8-t9 temporary registers, used for expression
evaluations; their values are not pre-
served across procedure calls.

$26..$27 or

$kt0..$kt1 k0-k1 reserved for the operating system kernel
$28 or $gp gp contains the global pointer

$29 or $sp sp contains the stack pointer

$30 s8 a saved register (like s0-s7)

$31 ra contains the return address; used for

expression evaluation.

Table D.1 General (Integer) Registers

General register $0 always contains the value 0. All other general registers are
equivalent, except that general register $31 also serves as the implicit link register
for jump and link instructions.
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The R2000 has two 32-bit special registers. The hi and lo special registers hold the
results of the multiplication (mult and multu) and division (div and divu) instruc-
tions. You usually do not need to refer explicitly to these special registers. Instruc-
tions that use the special registers refer to them automatically.

Z 'Name | Description :
hi Multiply/Divide special register holds the most significant
32 bits of multiply, remainder of divide
lo Multiply/Divide special register holds the least significant
32 bits of multiply, quotient of divide

Floating Point Registers

The R2010 FPA has sixteen floating point registers. Each register can hold either a
single precision (32 bit) or a double precision (64 bit) value. All references to these
registers use an even register number (e.g., $f4). Table D.2 summarizes the assem-
bler’s usage conventions and restrictions for these registers.

register name use and linkage S

$f0..f2 used to hold floating point type function results ($f0) and
complex type function results ($f0 has the real part, $f2
has the imaginary part.)

$£4..£10 temporary registers, used for expression evaluation, whose
values are not preserved across procedure calls.

$f12..8f14 used to pass the first 2 single or double precision actual
arguments, whose values are not preserved across
procedure calls.

$f16..$f18 temporary registers, used for expression evaluations, whose
values are not preserved across procedure calls.

$20..$£30 saved registers, whose values must be preserved across
procedure calls.

R2000 Architecture
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Assembly Language instruction Summaries

Tables D.3 through D.7 summarize the assembly language instruction set. Most
of the assembly language instructions have direct machine language equivalents;
refer to Appendix A and Appendix B for detailed instruction descriptions. As-
sembler instructions that are marked with the pointing hand symbol () are syn-
thesized by the assembler using one or more machine language instructions. Re-
fer to the section Basic Machine Definition at the end of this appendix for a dis-
cussion of these instructions. In the tables in this appendix, the operand terms
have the following meanings:

‘Operand  Description
destination destination register
address see page D-10
source,srcl,src2 | source register(s)
dest-gpr destination register (general purpose, not coprocessor)
src—gpr source register (general purpose, not coprocessor)
destination/src1 | single register serves as both source and destination
expression absolute value
immediate immediate value
label symbol label
breakcode value that determines the break
‘Description S Op=code | Operand G
= Load Address la destination,address
Load Byte Ib
Load Byte Unsigned Ibu
Load Halfword 1h
Load Halfword Unsigned lhu
Load Word Iw
Load Coprocessor z Iwcz
Load Word Left Iwl
Load Word Right lwr
Store Byte sb source,address
Store Halfword sh
Store Word SW
Store Word Coprocessor z swcz
Store Word Left swl
Store Word Right swr
& Unaligned Load Halfword ulh
7 Unaligned Load Halfword Unsigned ulhu
& Unaligned Load Word ulw
z Unaligned Store Halfword ush
7 Unaligned Store Word usw
Restore From Exception rfe
Syscall syscall
Break break breakcode
z No Operation nop

Table D.3 Load, Store and Special Instruction Summary
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Description "~ Op-code | Operand
= Load Immediate li destination,expression
Load Upper Immediate lui
= Absolute Value abs destination,src1
rz Negate (with overflow) neg destination/src1
= Negate (without overflow) negu
z NOT not
Add (with overflow) add destination,src1,src2
Add (without overflow) addu destination/src1,src2
AND and destination,src1,immediate
= Divide (with overflow) div destination/src1,immediate
= Divide (without overflow) divu
EXCLUSIVE OR xor
= Multiply mul
> Multiply (with overflow) mulo
& Multiply (with overflow) Unsigned mulou
NOT OR nor
OR or
7 Remainder rem
= Remainder Unsigned remu
= Rotate Left rol
= Rotate Right ror
iz Set Equal seq
Set Less Than slt
Set Less Than Unsigned sltu
> Set Less/Equal sle
= Set Less/Equal Unsigned sleu
= Set Greater Than sgt
> Set Greater Than Unsigned sgtu
= Set Greater/Equal sge
= Set Greater/Equal Unsigned sgeu
= Set Not Equal sne
Shift Left Logical sll
Shift Right Arithmetic sra
Shift Right Logical srl
Subtract (with overflow) sub
Subtract (without overflow) subu
Multiply mult
Multiply Unsigned multu srcl,src2

Table D.4 Computational Instruction Summary
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‘Description Op-code| Operand
Branch b label
Branch Coprocessor z True bczt
Branch Coprocessor z False bez f
Branch on Equal beq srcl1,src2,label
= Branch on Greater bgt srcl,immediate,label
= Branch on Greater/Equal bge
= Branch on Greater/Equal Unsigned bgeu
= Branch on Greater Than Unsigned bgtu
=Branch on Less blt
= Branch on Less/Equal ble
zBranch on Less/Equal Unsigned bleu
= Branch on Less Than Unsigned bltu
Branch on Not Equal bne
Branch and Link bal label
Branch on Equal Zero beqz srcl,label
Branch on Greater/Equal Zero bgez
Branch on Greater or Equal to Zero bgezal
And Link
Branch on Greater Than Zero bgtz
Branch on Less/Equal Zero blez
Branch on Less Than Zero . bltz
Branch on Less Than Zero And Link bltzal
Branch on Not Equal Zero bnez
Jump j address
Jump And Link jal srcl
Coprocessor z Operation cz expression
" Move move destination,src1
Move From HI Register mfhi register
Move To HI Register mthi
Move From LO Register mflo
Move To LO Register mtlo
Move From Coprocessor z mfcz dest-gpr, source
Move To Coprocessor z mtcz src—gpr, destination
Control From Coprocessor z cfcz src—gpr, destination
Control To Coprocessor z ctcz dest-gpr, source
Translation Lookaside Buffer Probe tlbp
Translation Lookaside Buffer Read tibr
Translation Lookaside Buffer Write Random| tlbwr
Translation Lookaside Write Index tibwi

Table D.5 Jump, Branch and Coprocessor Instruction Summary
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_Description _ Op-code | Operand
Load Fp
Double l.d destination,address
Single l.s
Store Fp
Double s.d source,address
Single s.s
Move Fp
Single mov.s destination,src1
Double mov.d
Absolute Value Fp
Double abs.d destination,src1
Single abs.s
Add Fp
Double add.d destination,src1,src2
Single add.s
Divide Fp
Double div.d
Single div.s
Multiply Fp
Double mul.d
Single mul.s
Subtract Fp
Double sub.d
Single sub.s
Convert Source to
Specified Precision Fp
Double to Single cvt.s.d destination,src2
Fixed Point to Single cvt.s.w
Fixed Point to Double cvt.d.w
Single to Double cvt.d.s
Double to Fixed Point cvt.w.d
Single to Fixed Point cvt.w.s
Negate Floating Point
Double neg.d destination,src2
Single neg.s

Table D.6 Floating Point Instruction Summary
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Description Op-code -
Compare Fp

F Single c.f.s srcl,src2
F Double c.f.d
UN Single c.un.s
UN Double c.un.d
*EQ Single c.eq.s
*EQ Double c.eq.d
UEQ Single c.ueq.s
UEQ Double c.ueq.d
OLT Single c.olt.s
OLT Double c.olt.d
ULT Single c.ult.s
ULT Double c.ult.d
OLE Single c.ole.s
OLE Double c.ole.d
ULE Single c.ule.s
ULE Double c.ule.d
SF Single c.sf.s
SF Double c.sf.d
NGLE Single c.ngle.s
NGLE Double c.ngle.d
SEQ Single c.deq.s
SEQ Double c.seq.d
NGL Single c.ngl.s
NGL Double c.ngl.d
*LT Single c.lt.s
*LT Double c.lt.d
NGE Single c.nge.s
NGE Double c.nge.d
*LE Single c.le.s
*LE Double c.le.d
NGT Single c.ngt.s
NGT Double c.ngt.d

*

These are the most common Compare instructions. The other Compare
instructions are provided for IEEE compatibility.

Table D.7 Floating Point Compare Instruction Summary
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Addressing

This section describes the formats that you can use to specify addresses. Access to
halfwords requires alignment on even byte boundaries, and access to words requires
alignment on byte boundaries that are divisible by four. Any attempt to address a
data item that does not have the proper alignment causes an alignment exception.

The unaligned assembler load and store instructions may generate multiple machine
language instructions. They do not raise alignment exceptions. These instructions
load and store unaligned data:

load word left (Iwl)

load word right (lwr)

store word left (swl)

store word right (swr)

unaligned load word (ulw)

unaligned load halfword (ulh)

unaligned load halfword unsigned (ulhu)

unaligned store word (usw)

unaligned store halfword (ush)

These instructions load and store aligned data:

load word (Iw)

load halfword (lh)

load halfword unsigned (lhu)
load byte (Ib)

load byte unsigned (Ibu)
store word (sw)

store halfword (sh)

store byte (sb)
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Address Formats

The R2000 Processor supports only one addressing mode — base register plus a
signed 16-bit offset. The assembler, however, synthesizes some additional address-
ing modes to present more traditional addressing capabilities to the assembly lan-
guage programmer. The assembler accepts these formats for addresses:

‘Format = = i il Address:
(base register) base address (zero offset assumed)
expression absolute address
expression (base register) based address
relocatable-symbol relocatable address
relocatable-symbol % expression relocatable address
relocatable-symbol % expression indexed relocatable address

(index register)

Each of these addressing formats is described in the table that follows.
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Expression

Address Description

(base-register)

expression

expression (base-register)

relocatable-symbol

relocatable-symbol + expression

relocatable-symbol (index-register)

Specifies an indexed address, which assumes a zero offset.
The base-register’s contents specify the address.

Specifies an absolute address. The assembler generates
the most locally efficient code for referencing a value at
the specified address.

Specifies a based address. To get the address, the ma-
chine adds the value of the expression to the contents of
the base-register.

Specifies a relocatable address. The assembler generates
the necessary instruction(s) to address the item and gener-
ates relocatable information for the link editor.

Specifies a relocatable address. To get the address, the
assembler adds or subtracts the value of the expression,
which has an absolute value, from the relocatable symbol.
The assembler generates the necessary instruction(s) to
address the item and generates relocatable information for
the link editor. If the symbol name does not appear as a
label anywhere in the assembly, the assembler assumes
that the symbol is external.

Specifies an indexed relocatable address. To get the ad-
dress, the machine adds the index-register to the
relocatable symbol’s address. The assembler generates the
necessary instruction(s) to address the item and generates
relocatable information for the link editor. If the symbol
name does not appear as a label anywhere in the assembly,
the assembler assumes that the symbol is external.

relocatable-symbol + expression (index-register)

R2000 Architecture

Specifies an indexed relocatable address. To get the ad-
dress, the assembler adds or subtracts the relocatable sym-
bol, the expression, and the contents of the index-register.
The assembler generates the necessary instruction(s) to
address the item and generates relocation information for
the link editor. If the symbol does not appear as a label
anywhere in the assembly, the assembler assumes that the
symbol is external.
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Pseudo Op-Codes

The keywords in this section describe pseudo op-codes (directives). These pseudo
op-codes influence the assembler’s later behavior. In the text, boldface type speci-
fies a keyword and italics represents an operand that you define.

Pseudo-Op

Description

.align expression

.ascii string [, string]...

asciiz string [, string]...

.asm0

.bgnb symno

Advance the location counter to make the expression low order
bits of the counter zero.

Normally, the .half, .word, .float, and .double directives auto-
matically align their data appropriately. For example, .word does
an implicit .align 2 (.double does a .align 3). You disable the
automatic alignment feature with .align 0. The assembler rein-
states automatic alignment at the next .text, .data, .rdata, or
.sdata directive.

Labels immediately preceding an automatic or explicit alignment
are also realigned. For example, foo: .align 3; .word 0 is the
same as .align ; foo: .word O .

Assembles each string from the list into successive locations. The
.ascii directive does not null pad the string. You MUST put quo-
tatinm marle (M) av~iind anch ctring VA ca tha (' 1a

tation marks (") around each string. You can use the C language

backslash escape characters.

Assembles each string in the list into successive locations and adds
a null. You can use the C language backslash escape characters.

(For use by compilers.) Tells the assembler’s second pass that this
assembly came from the assembler’s first pass.

(For use by compilers.) Sets the beginning of a language block.
The .bgnb and .endb directives delimit the scope of a variable set.
The scope can be an entire procedure, or it can be a nested scope
(for example a " {}” block in the C language). The symbol number
symno refers to a dense number in a .T file. For an explanation of
.T files, see the MIPS Languages Programmer’s Guide. To set the
end of a language block, see .endb.

.byte expressionl [, expression2 ]...[, expressionN]

D-12

Truncates the expressions from the comma-separated list to 8-bit
values, and assembles the values in successive locations. The ex-
pressions must be absolute. The operands can optionally have the
form: expressionVal : expressionRep. The expressionRep repli-
cates expressionVal’s value expressionRep times.
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Pseudo-Op

Description

.comm name, expression

.data

Unless defined elsewhere, name becomes a global common symbol
at the head of a block of expression bytes of storage. The linker
overlays like-named common blocks, using the maximum of the
expressions.

Tells the assembler to add all subsequent data to the data section.

.double expression [, expression2 | ...[, expressionN ]

.end [proc_name]

.endb symno

.endr

.ent proc_name

.extern name expression

.err

Initializes memory to 64-bit floating point numbers. The operands
can optionally have the form: expressionVal [ : expressionRep ].
The expressionVal is the floating point value. The optional expres-
sionRep is a non-negative expression that specifies a repetition
count. The expressionRep replicates expressionVal's value expres-
sionRep times. This directive automatically aligns its data and any
preceding labels to a double-word boundary. You can disable this
feature by using .align 0.

Sets the end of a procedure. Use this directive when you want to
generate information for the debugger. To set the beginning of a
procedure, see .ent.

(For use by compilers.) Sets the end of a language block. To set
the beginning of a language block, see .bgnb.

Signals the end of a repeat block. To start a repeat block, see
.repeat.

Sets the beginning of the procedure proc_name. Use this directive
when you want to generate information for the debugger. To set
the end of a procedure, see .end.

name is a global undefined symbol whose size is assumed to be
expression bytes. The advantage of using this directive, instead of
permitting an undefined symbol to become global by default, is
that the assembler can decide whether to use the economical $gp-
relative addressing mode, depending on the value of the -G op-
tion. As a special case, if expression is zero, the assembler refrains
from using $gp to address this symbol regardless of the size speci-
fied by -G.

(For use by compilers.) Signals an error. Any compiler front-end
that detects an error condition puts this directive in the input
stream. When the assembler encounters a .err, it quietly ceases to
assemble the source file. This prevents the assembler from con-
tinuing to process a program that is incorrect.

.file file_number file_name_striﬁg

R2000 Architecture
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Pseudo-Op

Description

.float expressionl [ , expression2 ]... [, expressionN ]

.fmask mask, offset

Initializes memory to single precision 32-bit floating point num-
bers. The operands can optionally have the form: expressionVal |
: expressionRep ]. The optional expressionRep is a non-negative
expression that specifies a repetition count. This optional form
replicates expressionVal’s value expressionRep times. This direc-
tive automatically aligns its data and preceding labels to a word
boundary. You can disable this feature by using .align 0.

(For use by compilers.) Sets a mask with a bit turned on for each
floating point register that the current routine saved. The least—
significant bit corresponds to register $f0. The offset is the dis-
tance in bytes from the virtual frame pointer at which the floating
point registers are saved. The assembler saves higher register num-
bers closer to the virtual frame pointer. You must use .ent before
.fmask and only one .fmask may be used per .ent. Space should
be allocated for those registers specified in the .fmask.

frame frame-register, offset, return_pc_register

.globl name

Describes a stack frame. The first register is the frame-register,
the offset is the distance from the frame register to the virtual
frame pointer, and the second register is the return program
counter (or, if the first register is $0, this directive shows that the
return program counter is saved four bytes from the virtual frame
pointer). You must use .ent before .frame and only one .frame
may be used per .ent. No stack traces can be done in the debug-
ger without .frame.

Makes the name external. If the name is otherwise defined (by its
appearance as a label), the assembler will export the symbol; oth-
erwise it will import the symbol. In general, the assembler imports
undefined symbols (that is, it gives them the UNIX storage class
"global undefined” and requires the linker to resolve them).

.half expressionl [, expression2 ] ... [, expressionN]

.lab label_name

Truncates the expressions in the comma-separated list to 16-bit
values and assembles the values in successive locations. The ex-
pressions must be absolute. This directive can optionally have the
form: expressionVal [ : expressionRep |. The expressionRep repli-
cates expressionVal's value expressionRep times. This directive
automatically aligns its data appropriately. You can disable this
feature by using .align 0.

(For use by compilers). Associates a named label with the current
location in the program text.
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Pseudo-Op Description

.lcomm name, expression

.loc file_number line_number

.mask mask, offset

nop

.option options

.repeat expression

R2000 Architecture

Makes the name’s data type bss. The assembler allocates the
named symbol to the bss area, and the expression defines the
named symbol’s length. If a .globl directive also specifies the
name, the assembler allocates the named symbol to external bss.
The assembler puts bss symbols in one of two bss areas. If the
defined size is smaller than the size specified by the assembler or
compiler’s -G command line option, the assembler puts the sym-
bols in the sbss area and uses $gp to address the data.

(For use by compilers). Specifies the source file and the line
within that file that corresponds to the assembly instructions that
follow. The assembler ignores the file number when this directive
appears in the assembly source file. Then, the assembler assumes
that the directive refers to the most recent .file directive. When a
.loc directive appears in the binary assembly language .G file, the
file number is a dense number pointing at a file symbol in the
symbol table .T file. For more information about .G and .T files,
see the Languages Programmer’s Guide.

(For use by compilers.) Sets a mask with a bit turned on for each
general purpose register that the current routine saved. Bit one
corresponds to register $1. The offset is the distance in bytes from
the virtual frame pointer where the registers are saved. The as-
sembler saves higher register numbers closer to the the virtual
frame pointer. Space should be allocated for those registers ap-
pearing in the mask. If bit zero is set it is assumed that space is
allocated for all 31 registers regardless of whether they appear in
the mask.

Tells the assembler to put in an instruction that has no effect on
the machine state. While several instructions cause no-operation,
the assembler only considers the ones generated by the nop direc-
tive to be wait instructions. This directive puts an explicit delay in
the instruction stream.

(For use by compilers). Tells the assembler that certain options
were in effect during compilation. (These options can, for exam-
ple, limit the assembler’s freedom to perform branch optimiza-
tions.) This option is intended for compiler-generated .s files
rather than for hand-coded ones.

Repeats all instructions or data between the .repeat directive and
the .endr directive. The expression defines how many times the
data repeats. With the .repeat directive, you CANNOT use labels,
branch instructions, or values that require relocation in the block.
To end a .repeat, see .endr.
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Pseudo-Op Description
.rdata Tells the assembler to add subsequent data into the rdata section.
.sdata Tells the assembler to add subsequent data to the sdata section.
.set option Instructs the assembler to enable or to disable certain options. Use set

.space expression

.struct expression

options only for hand-crafted assembly routines. The assembler has
these default options: reorder, macro, and at. You can specify only
one option for each .set directive. You can specify these .set options:

® The reorder option lets the assembler reorder machine language
instructions to improve performance.

® The noreorder option prevents the assembler from reordering ma-
chine language instructions. If a machine language instruction vio-
lates the hardware pipeline constraints, the assembler issues a
warning message.

® The macro option lets the assembler generate multiple machine
instructions from a single assembler instruction.

® The nomacro option causes the assembler to print a warning
whenever an assembler operation generates more than one ma-
chine language instruction. You must select the noreorder option
before using the nomacro option; otherwise, an error results.

® The at option lets the assembler use the $at register for macros,
but generates warnings if the source program uses $at.

® When you use the noat option and an assembler operation re-
quires the $at register, the assembler issues a warning message;
however, the noat option does let source programs use $at without
issuing warnings.

® The nomove options tells the assembler to mark each subsequent
instruction so that it cannot be moved during reorganization. Be-
cause the assembler can still insert nop instructions where neces-
sary for pipeline constraints, this option is less stringent than
noreorder. The assembler can still move instructions from below
the nomove region to fill delay slots above the region or vice versa.
The nomove option has part of the effect of the “volatile” C decla-
ration; it prevents otherwise independent loads or stores from oc-
curring in a different order than intended.

® The move option cancels the effect of nomove.

Advances the location counter by the value of the specified expression
bytes. The assembler fills the space with zeros.

This permits you to lay out a structure using labels plus directives like
.word, .byte, and so forth. It ends at the next segment directive
(.data, .text, etc.). It does not emit any code or data, but defines the
labels within it to have values which are the sum of expression plus
their offsets from the .struct itself.
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Pseudo-Op

Description

(symbolic equate)

.text

.verstamp major minor

.vreg register offset symno

Takes one of these forms: name = expression or name = register.
You must define the name only once in the assembly, and you
CANNOT redefine the name. The expression must be computable
when you assemble the program, and the expression must involve
operators, constants, and equated symbols. You can use the name
as a constant in any later statement.

Tells the assembler to add subsequent code to the text section.
(This is the default.)

(For use by compilers.) Specifies the major and minor version
numbers (for example, version 0.15 would be .verstamp 0 15).

(For use by compilers.) Describes a register variable by giving the
offset from the virtual frame pointer and the symbol number
symno (the dense number) of the surrounding procedure.

.word expressionl [, expression2 ]| ... [, expressionN]

Truncates the expressions in the comma-separated list to 32 bits
and assembles the values in successive locations. The expressions
must be absolute. The operands can optionally have the form:
expressionVal [ : expressionRep |. The expressionRep replicates
expressionVal’s value expressionRep times. This directive auto-
matically aligns its data and preceding labels to a word boundary.
You can disable this feature by using .align 0.

R2000 Architecture
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Linkage Conventions

This section gives rules and examples to follow when designing an assembly lan-
guage program. When you write assembly language routines, you should follow the
same calling conventions that the compilers observe, for two reasons:

® Often your code must interact with compiler-generated code, accept-
ing and returning arguments or accessing shared global data.

® The symbolic debugger gives better assistance in debugging programs
using standard calling conventions.

The conventions for the MIPS compiler system are a bit more complicated than
some. This complexity is needed mostly to enhance the speed of each procedure
call. Specifically:

® The compilers use the full, general calling sequence only when neces-
sary; where possible, they omit unneeded portions of it. For exam-
ple, the compilers avoid using a register as a frame pointer whenever
possible.

® The compilers and debugger observe certain implicit rules rather than
communicating via instructions or data at execution time. For exam-
ple, the debugger looks at information placed in the symbol table by a
”.frame” directive at compilation time, so that it can tolerate the lack
of a register containing a frame pointer at execution time.

Program Design

This section describes two general areas of concern to the assembly language pro-
grammer:

e stack frame requirements on entering and exiting a routine
® register usage and restrictions

The Stack Frame

The compilers classify each routine into one of the following categories:
® non-leaf routines; that is, routines that call some other routines

e leaf routines; that is, routines that do not themselves execute any pro-
cedure calls. Leaf routines are of two types:
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o leaf routines that require stack storage for local variables
o leaf routines that do not require stack storage for local variables.
You must decide the routine category before determining the calling sequence.

To write a program with proper stack frame usage and debugging capabilities, use
the following procedure:

1. PROLOG Regardless of the type of routine, you should include a .ent
pseudo-op and an entry label for the procedure. The .ent pseudo-op
is for use by the debugger, and the entry label is the procedure name.
The syntax is:

.ent procedure_name
procedure_name:

2. If you are writing a leaf procedure that does not use the stack, skip to
step 3. For leaf procedure that uses the stack or non-leaf procedures,
you must allocate all the stack space that the routine requires. The
syntax to adjust the stack size is:

subu $sp, framesize

e framesize is the size of frame required. Space must be allocated

e local variables

e saved general registers. Space should be allocated only for those
registers saved. For non-leaf procedures, you must save $31,
which is used in the calls to other procedures from this routine. If
you use registers $16-$23 or $30, you must also save them.

e saved floating point registers. Space should be allocated only for
those registers saved. If you use registers $f20-$f30 you must also
save them.

e Procedure call argument area. You must allocate the maximum
number of bytes for arguments of any procedure that you call from
this routine.

NOTE: Once you have modified $sp, you should not modify it again
for the rest of the routine (unless you are using a non-virtual frame
pointer).

3. Now include a .frame pseudo-op:

.frame framereg, framesize,returnreg
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The virtual frame pointer is a frame pointer as used in other compiler
systems but has no register allocated for it. It consists of the framereg
($sp, in most cases) added to the framesize (see step 2 above). Figure
D.1 illustrates the stack components.

high memory argument n
virtual frame argument 1
pointer ($fp) »

frame local & temporaries
offset

saved registers

(including returnreg ) ff amesize

stack argument build
pointer ($sp) >
(framereg)

low memory

Figure D.1 Stack Organization

The returnreg specifies the register the return address is in (usually
$31). These usual values may change if you use a varying stack point-
er or are specifying a kernel trap routine.

4. If the procedure is a leaf procedure that does not use the stack, skip to
step 5. Otherwise you must save the registers you allocated space for
in step 2.

To save the general registers, use the following operations:

.mask bitmask, frameoffset
SW reg, framesize+frameoffset-N($sp)

The .mask directive specifies the registers to be stored and where they
are stored. A bit should be on in bitmask for each register saved. For
example, if register $31 is saved, bit 31 should be ’1’ in bitmask. Bits
are set in bitmask in little-endian order, even if the machine configu-
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ration is big-endian. The frameoffset is the offset from the virtual
frame pointer (this number is usually negative). N should be 0 for the
highest numbered register saved and then incremented by four for
each subsequently lower numbered register saved. For example:

SW $31, framesize+frameoffset ($sp)
SW $17,framesize+frameoffset-4($sp)
Sw $16, framesize+frameoffset-8($sp)

Figure D.2 illustrates this example.

high memory

virtual frame
pointer ($fp) ->{ )

Jrame
offset

saved $31
saved $17 ; :
saved $16 ¥ framesize

stack '
pointer ($sp) > .

low memory

Figure D.2 Stack Example

Now save any floating point registers that you allocated space for in
step 2 as follows:

. fmask bitmask, frameoffset
s.[sd] reg, framesize+frameoffset-N($sp)

Notice that saving floating point registers is identical to saving general
registers except we use the .fmask pseudo-op instead of .mask, and
the stores are of floating point singles or doubles. The discussion
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regarding saving general registers applies here as well, but remember
that N should be incremented by 8 for doubles.

This step describes parameter passing: how to access arguments
passed into your routine and passing arguments correctly to other pro-
cedures. For information on high-level language specific constructs
(call-by-name, call-by-value, string or structure passing), refer to
Chapter 3 of the MIPS Language Programmer’s Guide.

As specified in step 2, space must be allocated on the stack for all
arguments even though they may be passed in registers. This provides
a saving area if their registers are needed for other variables.

General registers $4-$7 and floating point registers $f12, $f14 must be
used for passing the first two arguments (if possible). You must allo-
cate a pair of registers (even if it's a single precision argument) that
start with an even register for floating point arguments appearing in
registers.

In the table below, the *fN’ arguments are considered single or double
precision floating point arguments, and 'nN’ arguments are everything
else. The elipses (...) mean that the rest of the arguments do not go in
registers regardless of their type. The ’stack’ assignment means that
you do not put this argument in a register. The register assignments
occur in the order shown in order to satisfy optimizing compiler proto-
cols.

_Arguments Register Asﬁgnmems

Efl, 2, ...) f1 -> $f12, f2 —> $f14

(

2
E

f1, n1, 2, ...) f1 —> $f12, n1 -> $6, f2 —> stack

f1, n1, n2, ...) f1 —> $f12, n1 —> $6, n2 —> $7

nl, n2, n3, n4, ...) nl -> $4, n2 —> $5, n3 —> $6, n4 -> $7
nl, n2, n3, f1, ...) nl -> $4, n2 —> $5, n3 -> $6, f1 —> stack
nl, n2, f1, ..)) nl -> $4, n2 —> $5, f1 —> (36, $7)

ni, f1, ..) nl -> $4, f1 —> ($6, $7)

6. EPILOG Next, you must restore registers that were saved in step 4.

To restore general purpose registers:
1w reg, framesize+frameoffset-N($sp)

To restore the floating point registers:

1.([sd] reg,framesize+frameoffset-N($sp)
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(Refer to step 4 for a discussion of the value of N.)
7. Get the return address:

1w $31, framesize+frameoffset ($sp)
8. Clean up the stack:

addu $sp, framesize
9. Return:

J $31
10.To end the procedure:

.end procedurename
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Examples

This section contains the examples that illustrate program design rules; each exam-
ple shows a procedure written in the C language and its equivalent written in assem-
bly language.

Figure D.3 shows a non-leaf procedure. Notice that it creates a stackframe, and
also saves its return address since it must put a new return address into register $31
when it invokes its callee:

nonleaf ## define nonleaf as external

. e ebugger this starts nonlea
nonleaf: ## this is the entry point

subu $sp, 24 ## Create stackframe

sw $31, 20($sp) ## Save the return address

.mask 0x80000000, -4 ## only $31 was saved at ($sp)+24-4

.frame $sp, 24, $31 ## define frame size, return reg.

$£0, s
$31, 20($sp) ## Restore return address
$sp, 24 ## Delete stackframe
$31 ## Return to caller
.end nonleaf ## Mark end of nonleaf

Figure D.3 Non-Leaf Procedure
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Figure D.4 shows a leaf procedure that does not require stack space for local vari-
ables. Notice that it creates no stackframe, and saves no return address:

## Return to caller

.end leaf

Figure D.4 Leaf Procedure Without Stack Space for Local Variables

Figure D.5 shows a leaf procedure that requires stack space for local variables.
Notice that it creates a stack frame, but does not save a return address.
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## 72" is the lexical level of the
## procedure. You may omit it.
## Create stackframe

leaf_storage 2

{
.ent
leaf_ storage:
subu $sp, 24
.frame $sp, 24, $31

g rgumen 7
$2, -16($15) ## Return value goes in $2
$sp, 24 ## Delete stackframe
$31 ## Return to caller
leaf storage #H#

Figure D.5 Leaf Procedure with Stack Space for Local Variables
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Memory Allocation

The system’s default memory allocation scheme gives every process two storage
areas that can grow without bound. A process exceeds virtual storage only when the
sum of the two areas exceeds virtual storage space. The link editor and assembler
use the scheme shown in Figure D.6

OxHFFFff
[THEHE Reserved for Kernel
o (accessible from Kernel mode)
OxBFFFffff (2GB)
- Ox7fEfEf
Not Accessible ; ;
(by convention, not a hardware ‘Reserved | for operatung
o : implementation) system us
 OXTHFf000 (4KB) .
:°X7fff°f" Activation Stack Used for local data
iy (grows toward zero) in C programs
S:s_p, : Protected Allocated ‘as requested
) by users (as in System V
(grows from either edge) shared' memory r_eglons)
Reserved for sbrk and
Heap break system calls. =
(grows upward) Not always present.
bss Used forilocal data: '
(block started by storage)
.sbss Small bss section
sop > sdata Small da‘ta-se'cﬁon}.:-
i ‘ .data Data sectlon '
‘ij:i(‘JOOOOOOi .rdata Read only data sect:on
‘ Qxfffffff Reserved for
Shared Libraries
Not Used
R Program .text
. including header
~ 0x400000 ( 9 :
i Ox3FFFES
Reserved
. ox0 (4MB)
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Figure D.6 Memory Layout (User Program View)
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Basic Machine Definition

The assembly language instructions are a superset of the actual R2000’s machine
instructions. Generally, the assembly language instructions match the machine in-
structions; however, in some cases the assembly language instructions are macros
that generate more than one machine instruction (the assembly language multiplica-
tion instructions are examples).

You can, in most instances, consider the assembly instructions as machine instruc-
tions; however, for routines that require tight coding for performance reasons, you
must be aware of the assembly instructions that generate more than one machine
language instruction, as described in this section.

Load and Store Instructions

If you use an address as an operand in an assembler Load or Store instruction and
the address references a data item that is not addressable through register $gp or
the data item does not have an absolute address in the range -32768...32767, the
assembler instruction generates a lui (load upper immediate) machine instruction
and generates the appropriate offset to $at. The assembler then uses $at as the
index address for the reference. This condition occurs when the address has a
relocatable external name offset (or index) from where the offset began.

The assembler’s la (load address) instruction generates an addiu (add unsigned
immediate) machine instruction. If the address requires it, the la instruction also
generates a lui (load upper immediate) machine instruction. The machine requires
the la instruction because la couples relocatable information with the instruction for
symbolic addresses.

Depending on the expression’s value, the assembler’s li (load immediate) instruction
can generate one or two machine instructions. For values in the -32768...65535
range or for values that have zeros as the 16 least significant bits, the li instruction
generates a single machine instruction; otherwise it generates two machine instruc-
tions.

Computational Instructions

If a computational instruction immediate value falls outside the 0...65535 range for
Logical ANDs, Logical ORs, or Logical XORs (exclusive or), the immediate field
causes the machine to explicitly load a constant to a temporary register. Other

instructions generate a single machine instruction when a value falls in the
-32768...32767 range.
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The assembler’s seq (set equal) and sne (set not equal) instructions generate three
machine instructions each.

If one operand is a literal outside the range -32768...32767, the assembler’s sge (set
greater than or equal to) and sle (set less/equal) instructions generate two machine
instructions each.

The assembler’s mulo and mulou (multiply) instructions generate machine instruc-
tions to test for overflow and to move the result to a general register; if the destina-
tion register is $0, the check and move are not generated.

The assembler’s mul (multiply unsigned) instruction generates a machine instruction
to move the result to a general register; if the destination register is $0, the move
and overflow checking is not generated. The assembler’s divide instructions, div
(divide with overflow) and divu (divide without overflow), generate machine instruc-
tions to check for division by zero and to move the quotient into a general register; if
the destination register is $0, the move is not generated.

The assembler’s rem (signed) and remu (unsigned) instructions also generate multi-
ple instructions.

The rotate instructions ror (rotate right) and rol (rotate left) generate three machine
instructions each.

The abs (absolute value) instruction generates three machine instructions.

Branch Instructions

If the immediate value is not zero, the branch instructions beq (branch on equal)
and bne (branch on not equal), each generate a load literal machine instruction.
The relational instructions generate a slt (set less than) machine instruction to de-
termine whether one register is less than or greater than another. Relational instruc-
tions can reorder the operands and branch on either zero or not zero as required to
do an operation.

Coprocessor Instructions

For symbolic addresses, the coprocessor interface Load and Store instructions, lwcz
(load coprocessor z) and swez (store coprocessor z) can generate a lui (load upper
immediate) machine instruction.

Special Instructions

The assembler’s break instruction packs the breakcode operand in unused register
fields. An operating system convention determines the position.
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IEEE Floating—Point Standard
Compatibility Issues

MIPS has defined a floating—point coprocessor architecture that can be implemented
using various combinations of hardware and software. The main body of this man-
ual describes the functions of the architecture implemented by the R2010 FPA.
When the FPA is used in conjunction with the UMIPS operating system, the resulting
architecture fully conforms to the requirements of ANSVIEEE Standard 754-1985,
IEEE Standard for Binary Floating-Point Arithmetic. In addition to conforming to
the requirements of the IEEE standard, the MIPS floating—point coprocessor archi-
tecture fully supports the standard’s recommendations. In certain fairly obscure
cases, the IEEE standard’s recommendations are incomplete, ambiguous, or left to
the implementors’ discretion. The following section describes the interpretations
chosen for the MIPS floating-point architecture. Subsequent sections briefly de-
scribe the software support that the FPA requires in order to meet the standard’s
recommendations.

Interpretation of the Standard

The sections that follow describe how the MIPS architecture interprets those parts of
the standard that are left up to the implementor.

Underflow

The IEEE standard gives the implementor choices in the detection of underflow
conditions. The MIPS floating-point architecture requires that tininess be detected
after rounding, and that loss of accuracy be detected as inexact result.

Exceptions

The IEEE standard does not define, when an exception condition occurs, how the
exception field is set when traps are disabled, or how the sticky exception field is set
when traps are enabled. The MIPS floating-point architecture requires that the
exception field be loaded (set or cleared), and that the sticky exception field be set,
regardless of whether traps are enabled.
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Inexact

The IEEE standard specifies that an inexact exception may occur concurrently with
an overflow or underflow exception, and that the overflow or underflow exception
trap take priority. It further requires that the inexact trap be taken when an opera-
tion overflows while the overflow trap is disabled. The MIPS floating—point archi-
tecture specifies that both the inexact exception and the overflow or underflow ex-
ception are signaled in these cases. A floating-point trap occurs if either exception
is enabled; software is responsible for passing control to the appropriate trap han-
dler.

NaNs

The IEEE standard specifies that a quiet NaN be generated when an invalid opera-
tion occurs with the exception trap disabled, but does not further specify the value
generated. The MIPS floating—point architecture specifies that in such cases, the
NaN generated shall have a mantissa field of all ones, except for the high-order
fractional significand bit. The sign bit shall be positive, and the explicit integer bit,
if present, shall be set. If the result is a fixed-point integer format, the largest
positive value is generated instead. When the invalid operation exception occurs
due to one or more of the operands being signaling NaNs, a new quiet NaN is
generated according to the rules above. These values are listed in the following
table:

Format Generated NaN value

single 7fofffff
double isiiigBiiiiiiid
word piisiiii

Software Assistance for IEEE Standard Compatibility

The standard does not require that all floating—point operations be performed in
high-performance hardware, and it does not specify the instruction-set presentation.
Therefore, when little performance advantage is realized by performing an operation
in hardware, the MIPS architecture has simplified the hardware (the FPA) and re-
quires that the operation be performed using software assistance. Operations which
occur with low dynamic frequency may then be implemented in software, while still
providing hardware implementations of frequent operations.

The most complex part of the IEEE standard involves fully supporting the required
and recommended exceptional conditions that arise in floating—point computation,
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such as overflow, underflow, and invalid operation. Here again, the MIPS architec-
ture employs exception traps, when applicable, to relieve the FPA from handling all
exceptional conditions. Exceptions which occur with low dynamic frequency are
then handled using seftware assistance.

The MIPS architecture provides the necessary information and interrupts for trap-
ping on exception conditions, but relies extensively on software to implement the
IEEE recommendations for support of floating—point exception trap handlers.

IEEE Exception Trapping

The IEEE floating-point standard makes recommendations on information to be
made available during a floating-point exception trap handler. This information
often includes the original operand values or other information which must be com-
puted in hardware unless the original operand values are retained.

All of the information which the trap handler must determine can be derived from
the state of the floating—point coprocessor at the time of the trap. However, in order
to provide significant simplifications in the complexity of the FPA, some computa-
tion may need to be performed within the trap handler of an associated software
envelope to determine the information.

IEEE Format Compatibility

The IEEE standard requires a 32-bit floating-point format (single), and recom-
mends a 64-bit floating—point format (double).

The MIPS floating—point architecture uses the IEEE standard single-precision and
double-precision floating—point formats.

The IEEE standard does not specify the exact format of the extended format and the
R2010 does not implement, nor does UMIPS software support, this format.
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Appendix E

Implementing IEEE Standard Operations in Software

Some of the operations required or recommended by the IEEE standard are not
provided directly by the FPA. These operations are not implemented in the float-
ing—point instruction set either because of their high complexity, low frequency of
use, or redundancy with the set of implemented instructions. The paragraphs that
follow provide code descriptions and skeletons for the implementation of some of
these operations.

Remainder

The remainder function is accomplished by repeated magnitude subtraction of a
scaled form of the divisor, until the dividend/remainder is one-half of the divisor or
until the magnitude is less than one-half of the magnitude of the divisor. The
scaling of the divisor ensures that each subtraction step is exact; thus the remainder
function itself is always exact. This function is provided in the routine drem() in
libm.a of the UMIPS compiler release for the double-precision format. See the
manual page IEEE(3M) in the appropriate UMIPS system reference manual.

Round to Integer

The round to integer in floating—point format function may be implemented by adding
a fudge factor that causes normal rounding to occur at the end of the floating—point
fraction, and then subtracting it back again. The code example below is for single-
precision; the double-precision version is similar. This function is provided in the
routine rint() in libm.a of the UMIPS compiler release for the double-precision for-
mat. See the manual page floor(3M) in the appropriate UMIPS system reference
manual.

; Single-precision round to integer
; Operand is in fO
; Result placed in fO
; Registers f2, f4 modified
lwcl £2,16777216.0e0 1 £2 224
abs.s f4,f0 i £4 + |fol
fc.ole.s f2,f4 f2 7 < f4
bclf 1f :leave alone if NaN, infinity or>22
c.eq.s f0,f4 ;was fO negative?
bclt 2f ;Yes — will have to negate result
add.s f4,f2,f4 ;round off to integer
J 1f ;all done after one more instruction
sub.s fo,f4,f2 ;remove fudge factor
2:
sub.s fo,f2,f4 ;remove fudge factor and negate
1:
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IEEE Standard
Compatibility Issues

Convert between Binary and Decimal

These functions are provided in the routines atof(3) and printf(3) in libc.a of the
UMIPS releases. See the manual page atof(3) and printf(3) in the appropriate
UMIPS system reference manual.

Copy Sign

The copy sign operation can be performed using floating—point compares and the
absolute value and negation operations. Special attention must be paid to negative
zero, as it has negative sign, but zero value. This function is provided in the routine
copysign() in libm.a of the UMIPS releases. See the manual page IEEE(3) in the
appropriate UMIPS system reference manual.

Scale Binary

This operation is performed by moving the operand to the processor, where shift
and add operations perform the basic operation. Checking for exceptional operands
can be performed in either the processor or the floating-point coprocessor. This

function is provided in the routine scalb() in libm.a of the UMIPS releases. See the
a IREE/AM) in tha annranriata TIMIPC cuctem

sae re
page IEEE(3M) in the appropriate UMIPS system re
Log Binary

This operation is performed by moving the operand to the processor, where shift
and add operations perform the basic operation. This function is provided in the
routine logb() in libm.a of the UMIPS releases. See the manual page IEEE(3M) in
the appropriate UMIPS system reference manual.

Next After

This operation is performed by comparing the two floating—point values to deter-
mine the direction to compute the neighbor, then moving the operand to the proces-
sor, where single-precision or multiple-precision add operations perform the basic
operation.

Finite
This operation can be provided by taking the absolute value and comparing for
equality with +c0. This function is provided in the routine finite() in libm.a of the

UMIPS releases. See the manual page /EEE(3M) in the appropriate UMIPS system
reference manual.

R2000 Architecture E-5



Appendix E

Is NaN

This operation is provided by using the unordered predicates of the floating-point
compare operation.

Arithmetic Inequality
This operation is available as the floating-point compare operation.
Class

This operation is performed by moving the operand to the processor, where fixed-
point shifts and comparisons can classify the floating-point value. These functions
are provided in the routines fp_class_d() and fp_class_f() in libc.a of the UMIPS
releases. See the manual page fp_class(3) in the appropriate UMIPS system refer-
ence manual.
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32-bit addresses, jumping to C-4 ADDU (add unsigned) A-12

32-bit addresses, loading C-2 AdEL (address error load) exception code 5-5
3-operand register type instructions 3-6 AdES (address error store) exception code 5-5
64-bit math, examples of C-10, C-11 allocating registers 1-15

allocation of memory D-27
ALU immediate instructions 3-5

AND A-13
A ANDI (AND immediate) A-14
architecture, load/store 1-7
ABS.fmt instruction B-8, 7-3,7-4 architecture, memory system 4-1
absolute value instruction B-8, 7-3,7-4 arithmetic comparisons,
access control bits, 4-7 branching on C-4, C-5
global (G) bit 4-6 arithmetic, multi-precision C-10
valid (V) bit 4-6 arithmetic operations, calculating overflow C-8
access time, instruction 1-12,1-13 assembler, D-1ff
ADD A-10 addressing modes D-9
Add Immediate A-10 linkage conventions D-18ff
Add Immediate Unsigned A-11 use of registers D-1
Add Unsigned A-12 assembly language, D-1ff
ADD.fmt instruction B-9, 7-3,7-4 examples D-24ff
ADDI (add immediate) A-10 instruction summaries D-4

ADDIU (add immediate unsigned) A-11 author (see Zan)
address error, exception 5-13
exception code 5-5

address formats D-10, D-11 B
address, loading D-28
translation 4-7, 4-8 BadVAddr register 5-10
addresses, bandwidth, memory 1-12
jumping to 32-bit C-4 BCI1F instruction B-10, 7-7
loading 32-bit, example of C-2 BCIT instruction B-11, 7-7
addressing 2-6 BD (Branch Delay) bit 5-4
assembler modes D-9 benefits, of RISC 1-19,1-20
indexed, example of C-3 BERR* signal 5-15
misaligned words 2-7 BEV (bootstrap exception vector) 5-12

virtual 4-3
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BEV bit, Status register 5-7 calculating values in floating-point format 6-9
big endian 2-6,2-7 carry, testing for C-6
binary/decimal convert E-5 Cause register 5-4
bit assignments, Control/Status 6-5, 8-2 C.cond.fmt instruction B-12, 7-3 - 7-6
bootstrap exception vector (BEV) 5-12 CE (Coprocessor Error) bit, Cause register 5-4
(BEV) bit, Status register 5-7 CFC1 instruction B-6, 7-1,7-2
Bp (breakpoint) exception code 5-5 CFCz (move control from coprocessor) A-26
branch delay (BD) bit, Cause register 5-4 chip size 1-19
branch delay slot 1-9,1-11 class, IEEE software implementation E-6
examples of filling C-5 CM (cache miss) bit, Status register 5-7
branch instructions 3-9, D-29 compare FPA conditions B-12,.7-3 — 7-6
BCzF (branch on coprocessor false) A-17 compatibility, IEEE standard formats E-3
BCzT (branch on coprocessor true) A-16 compiler, linkage conventions D-18
BEQ (on equal) A-17 compilers,
BGEZ (on greater than or equal zero) A-18 global optimization 1-16
BGEZAL (greater/equal zero & link) A-19 local optimization 1-16
BGTZ (on greater than zero) A-20 loop optimization 1-15
BLEZ (on less than or equal zero) A-21 optimization levels 1-16
BLTZ (on less than zero) A-22 optimizing 1-14 - 1-16
BLTZAL (on less than zero and link) A-23 optimizing techniques 1-15
BNE (on not equal) A-24 peephole optimization 1-16
delayed 1-9,1-11 pipeline scheduling 1-16
FPA 7-7 redundancy elimination 1-15
Branch on Equal A-17 register allocation 1-15
branch on FPA condition B-10, B-11, 7-7 computational instructions 3-5, D-28, D-29
branches, delayed 3-16 computational instructions, FPA 7-3, 7-4, B-6
branch on arithmetic comparisons C-4, CS condition bit, FPA 6-5, 6-6
BREAK A-25§ conditional branch (FPA) 7-7, B-10, B-11
break instruction 3-10, 5-14 constants, loading 32-bit, example of C-2
breakpoint (Bp) exception code 5-5 Context register 5-10
breakpoint exception 5-14 control from coprocessor (CFC1) B-14, 7-1, 7-
buffer, write 2-14 control to coprocessor (CTC1) B-15, 7-1, 7-2
bus error exception 5-15 control/status register, FPA 6-5
bus error (IBE/DBE) exception code 5-5 bit assignments 6-5
byte specifications, loads/stores 3-3 condition bit 6-5, 6-6

exception bits 6-6, 8-2
rounding mode bits 6~7
sticky bits 6-7, 8-2

C trap enable bits 6-6, 6-7, 8-2
conventions, linkage (assembler) D-18ff
convert

cache memory 1-12,1-13, 2-14 binary/decimal E-5

cache miss (CM) bit, Status register 5-7 convert instruction (FPA)

caches, isolating 5-8 double B-16, 7-3,7-4

caches, swapping 5-7 single instruction B-17, 7-3,7-4
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convert word instruction B-18, 7-3,7-4
coprocessor error (CE) bit, Cause register 5-4
coprocessor, instructions 3-11, D-29
coprocessor, operation A-27
coprocessor operations, FPA 6-11,6-12
coprocessor,
unusable (CpU) exception code 5-5
unusable exception 5-16
usable (CU) bit, Status register 5-7
copy sign, IEEE software implementation E-5
COPz (coprocessor operation) A-27
CpU (coprocessor unusable) exception code 5-5
CPU general registers 2-8
CTC1 instruction B-15, 7-1,7-2
CTCz (move control to coprocessor) A-28
CU (coprocessor usable) status bit 5-7
current interrupt enable (IEc) bit 5-8, 5-9
current kernel/user mode (KUc) bit 5-8, 5-9
CVT.D.fmt instruction B-16, 7-3,7-4
CVT.S.fmt instruction B-17, 7-3,7-4
CVT.W.fmt instruction B-18, 7-3,7-4
cycles per instructions 1-4ff

D

data bus error exception code 5-5
data formats and addressing 2-6
DBE (data bus error) exception code 5-5
debugger, linkage conventions D-18
decimal/binary convert E-5
decode time 1-11
default action, FPA exceptions 8-2,8-3
defining performance 1-2
definition of machine D-28
delay slot,
branch instructions 1-9,1-11
examples of filling C-5
load instructions 1-8,1-9
delayed
branch instructions 1-9,1-11
branches 3-16
instruction slot 3-14
jumps 3-16
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load instructions 1-7,1-9, 3-15
denormalized numbers, floating-point 6-11
design process, RISC 1-18
dirty bit 4-6
disabling interrupts 5-8
DIV (divide) A-29
DIV.fmt instruction B-19, 7-3,7-4
Divide A-29
divide instruction (FPA) B-19, 7-3, 7-4
Divide Ursigned A-30
division-by-zero

exception, FPA 8-6

FPA control/status register bit 6-6, 8-2
DIVU (divide unsigned) A-30
double-precision floating—point formats 6-9
double-word math, examples C-10
double-word shifts, examples C-12

E

In

E (unimplemented operation) exception, FPA ¢

enabling interrupts 5-8
endian, big/little 2-6,2-7
entries, format of TLB 4-5
EntryHi & EntryLo registers 4-6
EPC (Exception Program Counter) 5-1
EPC register 5-5
epilog D-22
error, parity (PE bit) 5-7
examples,
assembly language D-24ff

branching on arithmetic comparisons C-4,

carry, testing for C-6
double-word math C-10
double-word shifts C-12
filling branch delay slot C-5
indexed addressing C-3
jumping to 32-bit addresses C-4
leaf procedure D-25

loading 32-bit addresses C-2
loading 32-bit constants C-2
multi-precision math C-10
overflow, testing for C-8
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subroutine returns C-4
testing for carry C-6
testing for overflow C-8
ExcCode, Cause register 5-5
exception
bits, FPA control/status register 6-6, 8-2
code field, Cause register 5-5
description details 5-12ff
handling registers 5-3
processing, R2000 5-1
processings & Status register mode bits 5-9
Program Counter (EPC) 5-1
program counter (EPC) register 5-5
Restore from (RFE) A-59
summary, R2000 5-2
trapping, IEEE standard E-3
traps, processing 8-2,8-3
vector, bootstrap 5-7
vector locations 5-12
exceptions, S5-1ff, 8-1ff
address error 5-13
breakpoint 5-14
bus error 5-15
coprocessor unusable 5-16
division-by-zero (FPA) 8-6
floating point 6-12
floating point 8-1ff
FPA default action 8-2,8-3
IEEE standard interpretation E-1
inexact (FPA) 8-4
interrupt 5-17
invalid operation (FPA) 8-5
overflow 5-18
overflow (FPA) 8-7
reserved instruction 5-19
reset 5-20
restoring from (rfe instruction) 5-9, 5-10
saving/restoring state 8-10
system call 5-21
TLB miss 5-22ff
TLB mod 5-25
underflow (FPA) 8-8
unimplemented operation (FPA) 8-9
UTLB miss 5-26
exclusive OR immediate (XORI) A-86

exclusive OR (XOR) A-85
executing instructions serially 1-6
execution times, FPA instructions 7-10,7-11

F

FCR (Floating-point Control Registers) 6-4
features, FPA 6-2
FGR (Floating-point General Registers) 6-3
finite, IEEE software implementation E-5
floating—point accelerator
floating—point
exceptions 6-12, 8-1ff
control registers (FCR) 6-4
denormalized numbers 6-11
format, parameter values 6-10
formats 6-8
formats. calculating values in 6-9
formats. double-precision 6-9
formats. single-precision 6-8
general registers (FGR) 6-3
infinity 6-11
instructions (see FPA instructions)
normalized numbers 6-10
number definitions 6-10
operations 6-12
registers D-3
registers (FPR) 6-4
relational operators 7-5,7-6
standard, IEEE E-1ff
zero 6-11
format compatibility, IEEE standard E-3
formats,
address D-10, D-11
data 2-6
floating—point 6-8
R2000 instructions 3-1
virtual address 4-1
FPA, branch instructions 7-7
FPA, computational instructions 7-3,7-4
FPA control/status register 6-5
bit assignments 6-5
condition bit 6-5, 6-6
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exception bits 6-6, 8-2
rounding mode bits 6-7
sticky bits 6-7, 8-2
trap enable bits 6-6, 6-7, 8-2
FPA, coprocessor operations 6-11,6-12
FPA, exceptions 8-1ff
default action 8-2,8-3
division-by-zero 8-6
inexact 8-4
invalid operation 8-5
overflow 8-7
underflow 8-8
unimplemented operation 8-9
restoring state after 8-10
saving/restoring state 8-10
FPA features 6-2
floating—point accelerator overview 6-1ff
implementation & revision register 6-8
instruction execution times, 7-10,7-11
instruction pipeline, 7-8ff
instruction set overview 6-13
instruction set summary 7-1ff
FPA instructions,
ABS.fmt B-8, 7-3,7-4
ADD.fmt B-26, 7-3,7-4
BC1F B-10, 7-7
BC1T B-11, 7-7
branch on condition B-10, B-11, 7-7
C.cond.fmt B-12, 7-3 - 7-6
CFC1 B-14, 7-1,7-2
computational B-6, 7-3,7-4
CTC1 B-15, 7-1,7-2
CVT.D.fmt B-16, 7-3,7-4
CVT.S.fmt B-17, 7-3,7-4
CVT.W.fmt B-18, 7-3,7-4
DIV.fmt B-19, 7-3,7-4
load (LWC1) 7-1,7-2
LwC1 B-20, 7-1,7-2
MFC1 B-21, 7-1,7-2
MOV.fmt B-22, 7-3,7-4
MTC1 B-23, 7-1,7-2
MUL.fmt B-24, 7-3,7-4
NEG.fmt B-2§, 7-3,7-4
SUB.fmt B-26, 7-3,7-4
SwcC1 B-27, 7-1,7-2
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FPA, load operations 6-11

FPA, move instructions 7-1,7-2

FPA, move operations 6-11

FPA, overlapping instructions 7-12,7-13
FPA, pipeline 6-14, 6-15

FPA, processing exception traps 8-2,8-3
FPA, programming model 6-2ff

FPA register, implementation & revision 6-8
FPA, store instructions (SWC1) 7-1,7-2
FPA, store operations 6-11

FPR (Floating-Point Registers) 6-4
frame. stack D-18ff

G

G (Global) bit 4-6

general exception vector 5-12

general registers, assembler’s usage D-1, D-2
global (G) bit 4-6

global optimization 1-16

H

handler, UTLB miss 5-24

HI, move from (MFHI) A-48

HI, move to (MTHI) A-52

hidden benefits of RISC 1-19,1-20
hierarchical memory system 1-12
hierarchy, memory system 2-13,2-14

I

I (inexact) exception, FPA 8-4
IBE (instruction bus error) exception code 5-5
identifier, process 4-1
IEEE floating point standard E-1ff
interpreting E-1, E-2
exception trapping E-3
format compatibility E-3
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IEEE standard interpretation

exceptions E-1

inexact E-2

NaNs E-2

underflow E-1
IEEE standard,

software assistance E-2

software implementations E-4
IEo,IEp,IEc interrupt enable bits 5-8, 5-9
immediate AND (ANDI) A-14
immediate exclusive OR (XORI) A-86
immediate instructions, ALU 3-5
immediate, load upper (LUI ) A-39
immediate OR (ORI) A-58
implementation & revision register, FPA 6-8
Index register 4-9
indexed addressing, example of C-3
inexact exception, FPA 8-4
inexact, IEEE standard interpretation E-2
inexact operation status bit (FPA) 6-6, 8-2
infinity, floating-point 6-11
instruction

access time 1-11,1-13

break 3-10

bus error exception code 5-5

decode time 1-11

execution, serial 1-6

execution time, variable 1-6

execution times, FPA 7-10,7-11

formats, R2000 3-1

notation conventions, R2000 3-2

opcode bit encoding (FPA) B-28

operation time 1-11

overlapping, FPA 7-12,7-13

pipeline, FPA 6-14, 6-15, 7-8ff

pipeline, R2000 2-12, 3-13

pipelines 1-4 — 1-6

reserved (RI) exception code 5-5
instruction set overview,

FPA 6-13

R2000 2-3
instruction set summary, FPA 7-1ff
instruction slot, delayed 3-14
instruction summaries, assembly language D-4
instruction, system call 3-10

instructions, R2000 (see also FPA instructions)

3-operand register type 3-6

ADD A-9

ADDI (add immediate) A-10

ADDIU (add immediate unsigned) A-11
ADDU (add unsigned) A-12

ALU immediate 3-5

AND A-13

ANDI (AND immediate) A-14

BCzF (branch on coprocessor false) A-15
BCzT (branch on coprocessor true) A-16
BEQ (branch on equal) A-17

BGEZ (greater/equal zero) A-18
BGEZAL (greater/equal zero & link) A-19
BGTZ (branch on greater than zero) A-20
BLEZ (branch on less than or equal zero) A-2
BLTZ (branch on less than zero) A-22
BLTZAL (less than zero and link) A-23
BNE (branch on not equal) A-24

branch 3-9, D-29

BREAK A-25

CFCz (move control from coprocessor) A-26
computational 3-5, D-28, D-29
coprocessor 3-11, D-29

COPz (coprocessor operation) A-27

CTCz (move control to coprocessor) A-28
cycles per 1-4ff

DIV (divide) A-29

DIVU (divide unsigned) A-30

J (jump) A-31

JAL (jump and link) A-32

JALR (jump and link register) A-33

JR (jump to register) A-34

jump 3-9, A-31

LB (load byte) A-35

LBU (load byte unsigned) A-36

LH (load halfword) A-37

LHU (load halfword unsigned) A-38

load D-28

load and store 3-2

LUI (load upper immediate) A-39

LW (load word) A-40

LWCz (load word from coprocessor) A-41
LWL(load word left) A-42

LWR (load word right) A-44
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instructions, R2000 (continued)
MFCO0 (move from CP0) A-46
MFCz (move from coprocessor) A-47
MFHI (move from HI) A-48
MFLO (move from LO) A-49
MTCO (move to CP0) A-50
MTCz (move to coprocessor) A-51
MTHI (move to HI) A-52
MTLO (move to LO) A-53
MULT (multiply) A-54
multiply/divide 3-8
MULTU (multiply unsigned) A-55
NOR (not OR) A-56
OR A-57
ORI (OR immediate) A-58
per task 1-14ff
RFE (restore from Exception) A-59
SB (store byte) A-60
SH (store halfword) A-61
shift 3-7
SLL (shift left logical) A-62
SLLV (shift left logical variable) A-63
SLT (set on less than) A-64
SLTI (set on less than immediate) A-65
SLTIU (less than immediate unsigned) A-66
SLTU (set on less than unsigned) A-67
special 3-10, D-29
special function for OS 1-18
SRA (shift right arithmetic) A-68
SRAV (shift right arithmetic variable) A-69
SRL (shift right logical) A-70
SRLV (shift right logical variable) A-71
store D-28
SUB (subtract) A-~72
SUBU (subtract unsigned) A-73
SW (store word) A-74
SWCz (store word to coprocessor) A-75
SWL (store word left) A-76
SWR (store word right) A-78
SYSCALL A-80
system control coprocessor 3-12
time per 1-3,1-4
TLB 3-i2, 4-10
TLBP (probe TLB) A-81
TLBR (read indexed TLB entry) A-82
TLBWI (write indexed TLB entry) A-83
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instructions, R2000 (continued)
TLBWR (write random TLB entry) A-84
XOR (exclusive OR) A-85
XORI (exclusive OR immediate) A-86
interpreting IEEE floating-point standard E-1
inter-procedural optimization 1-16
interrupt exception 5-17
interrupt mask (IntMask) status bits 5-8
interrupts, enabling/disabling 5-8
interrupts pending (IP) bit, Cause register 5-4
interrupts, RISC support for 1-17
IntMask (interrupt mask) 5-17
bits (Status register) 5-8
invalid op status bit, FPA 6-6, 8-2
invalid operation exception, FPA 8-5
IP (Interrupts Pending) bit, Cause register 5-4
Is NaN, IEEE software implementation E-6
IsC (isolate cache) bit, Status register 5-8
isolate cache (IsC) bit, Status register 5-8

J

J (jump) A-31

JAL (jump and link) A-32

JALR (jump and link register) A-33
JR (jump to register) A-34

Jump A-31

jump and branch instructions 3-9
Jump and Link A-32

Jump and Link Register (JALR) A-33
jump register, subroutine returns C-4
Jump to Register A-34

jumping to 32-bit addresses C-4
jumps, delayed 3-16

K

kernel mode 2-11

kernel mode virtual addressing 4-3
kernel/user mode bits, Status register 5-8, 5-9
kseg 2-11

kseg (0, 1, 2) 4-3
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KUo,KUp,KUc kernel/user mode bits 5-8, 5-9

kuseg 2-11
kuseg 4-3

L

latency, load instructions 3-14
LB (load byte) A-35
LBU (load byte unsigned) A-36
leaf procedure, example D-25
leaf routines D-18, D-19
LH (load halfword) A-37
LHU (load halfword unsigned) A-38
link, JALR (jump and link register) A-33
linkage conventions (assembler) D-18ff
linkage of registers, by assembler D-1
little endian 2-6,2-7
LO, move from (MFLO ) A-49
load address instruction D-28
load and store instructions 3-2
load delay slot 1-8,1-9
load instructions (LWC1), FPA 7-1,7-2
load instructions, D-28

Byte A-35

Byte Unsigned A-36

delayed 1-7,1-9

Halfword A-37

Halfword Unsigned A-38

latency of 3-14

upper Immediate A-39

Word A-40

Word from Coprocessor A-41

Word Left A-42

Word Right A-44
load operations, FPA 6-11
load word to coprocessor (LWC1) B-8, 7-1
loading 32-bit addresses, example of C-2
loading 32-bit constants, example of C-2
loads,

delayed 3-15

unaligned D-9
load/store architecture 1-7
local optimization 1-16

X-8

log binary, IEEE software implementation E-5

loop optimization 1-15

LUI (load upper immediate) A-39

LW (load word) A-40

LWC1 instruction B-20, 7-1,7-2

LWCz (load word from coprocessor) A-41
LWL (load word left) A-42

LWR (load word right) A-44

M

machine definition D-28

machine language programming tips C-1ff
mask interrupt (IntMask) status bits 5-8
math, multi-precision C-10

memory allocation D-27

memory bandwidth 1-12

memory, cache 1-12,1-13, 2-14
memory, management system 2-10
memory map, virtual 4-2

memory system architecture 4-1
memory system, hierarchical 1-12
memory system hierarchy 2-14

MO (oo Fon
VMICLU (IMOVe 11om CPG) A-46

MEFC1 instruction B-21, 7-1,7-2
MFCz (move from coprocessor) A-47
MFHI (move from HI) A-48
MFLO (move from LO) A-49
misaligned words 2-7
miss exception,

TLB 5-22ff

UTLB 5-26
miss handler, UTLB 5-24
misses, multiple TLB 5-24
MOD exception code 5-5

mode bits, Status register 5-9
moded,

kernel 2-11

operating 1-17

supervisor 4-2

user 2-11
modified TLB exceptions 5-25
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move,
Control from Coprocessor (CFCz) A-26
Control to Coprocessor (CTCz) A-28
from Coprocessor (MFC1) B-21, 7-1
from Coprocessor (MFCz) A-47
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Restore from Exception (RFE) A-59, 5-9 SLLV (shift left logical variable) A-63
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RFE (Restore from Exception) A-59, 5-9 SLT (set on less than) A-64
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hidden benefits 1-19,1-20 software implementations of IEEE standard E-4
user benefits of 1-19 software interrupts (SW) Cause bit 5-4
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rounding mode bits, FPA 6-7 special-function instructions for OS 1-18

RP, rounding mode status bit (FPA) 6-7 SRA (shift right arithmetic) A-68

RZ, rounding mode status bit (FPA) 6-7 SRAV (shift right arithmetic variable) A-69

SRL (shift right logical) A-70
SRLV (shift right logical variable) A-71
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S stack organization D-20
stack pointer (sp) D-2, D-20
saving state, after FPA exceptions 8-10 standard, floating point (IEEE) E-1ff
SB (store byte) A-60 Stanford MIPS project 1-18
scale binary, IEEE software implementation E-5 state, restoring after FPA exceptions 8-10
scheduling, pipeline 1-16 state, saving after FPA exceptions 8-10
segments, virtual memory 2-11, 4-3 Status register,
serial instruction execution 1-6 R2000 5-6
servicing multiple TLB misses 5-24 FPA 6-5
Set on Less Than A-64 mode bits and exception processing 5-9
Set on Less Than Immediate A-65 sticky status bits, FPA 6-7, 8-2
Set on Less Than Immediate Unsigned A-66 store instructions 3-2, D-28
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Right Arithmetic Variable A-69 word to coprocessor A-75
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strength reduction 1-16
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SUB.fmt instruction B-26, 7-3,7-4
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Subtract A-72
Subtract Unsigned A-73
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supervisor mode 4-2
surf (see danny)
SW (software interrupts) cause bit 5-4
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SwC (swap caches) bit, Status register 5-7
SWCl1 instruction B-27, 7-1,7-2
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SWL (store word left) A-76
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Sys (SysCall) exception code 5-5
SYSCALL A-80
System Call A-80

exception 5-21
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system control coprocessor
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task, instructions per 1-14ff
techniques, optimizing 1-15
technologies 1-19
testing for carry, example C-6
testing for overflow, example C-8
time per cycle 1-11 - 1-13
time per instruction 1-3,1-4
tips, machine language programming C-1ff
TLB and virtual memory 4-4
TLB entries, format of 4-5
TLB instructions 3-12, 4-10
TLBP (probe TLB) A-81
TLBR (read indexed TLB entry) A-82

TLBWI (write indexed TLB entry) A-83
TLBWR (write random TLB entry) A-84
TLB miss exception S5-22ff
TLB misses, multiple 5-24
TLB mod exception 5-25
TLB shutdown (TS) bit, Status register 5-7
TLB (Translation Lookaside Buffer) 2-10
TLBL (load) exception code 5-5
TLBS (store) exception code 5-5
translation lookaside buffer (see TLB) 2-10
translation of virtual addresses 4-7, 4-7
trap enable bits (FPA) 6-6, 6-7, 8-2
trapping exceptions, IEEE standard E-3
traps 1-17
traps, processing FPA exceptions 8-2,8-3
TS (TLB shutdown) bit, Status register 5-7

U

U (underflow) exception, FPA 8-8
unaligned loads D-9
unaligned stores D-9
underflow status bit, FPA 6-6, 8-2
underflow exception, FPA 8-8
underflow, IEEE standard interpretation E-1
unimplemented op status bit, FPA 6-6, 8-2
unimplemented operation exception, FPA 8-9
unsigned,
add (ADDU) A-12
divide (DIVU) A-30
multiply (MULTU) A-55
Set on Less Than (SLTU) A-67
Subtract (SUBU) A-73
unusable coprocessor exceptions 5-16
user benefits of RISC 1-19
user mode 2-11
user mode bits, Status register 5-8, 5-9
user mode virtual addressing 4-3

- UTLB miss

exception 5-26
exception vector 5-12
handler 5-24
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V (invalid operation) exception, FPA 8-5
V (Valid) bit 4-6
values, calculating in FP format 6-9
variable instruction execution time 1-6
vector locations, exceptions 5-12
virtual address, bad (BadVAddr) register 5-10
virtual address format 4-1
virtual address translation 4-7, 4-8
virtual addressing,
kernal mode 4-3
virtual memory and the TLB 4-4
virtual memory map 4-2
virtual memory segments 2-11, 4-3
virtual memory system 1-17
virtual page number (see VPN)
VPN (Virtual Page Number) 4-1, 4-6, 5-10
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write buffer 2-14

write indexed TLB entry A-83

write random TLB entry (TLBWR) A-84
write TLB instruction (TLBW) 4-11

X

XOR (exclusive OR) A-85
XORI (exclusive OR immediate) A-86

z

Z (division-by-zero) exception,
zan (see author)
zero, floating-point 6-11

zero parity (PZ) bit, Status register 5-7

‘PA 8-6
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vice. Via a telephone link you can call
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recent application know-how.
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packet switching network - in Ger-
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the difference that a brief intensive
training course can make to your mas-
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our Dusseldorf headquarters, or on
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from NEC, you become automatically
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support through EB tools, are interest-
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